Meta-Study on Integrated Cooling of Modern Integrated Circuits using Microfluidics

Main Article Content

System Administrator
Ben Andrew
Jesse McNamara
Michael Karanikolas


The substantial increase in the transistor density of integrated circuits (ICs) in recent times has allowed considerable improvements in computing power. With increasing transistor and power density, the heat produced by modern ICs has increased significantly. This in turn has negative effects on the performance, reliability, and power consumption of the ICs. A solution to the IC’s complications caused by overheating is integrated cooling, in which cooling fluid is delivered through microchannel heat sinks on the backside of an IC. This meta-study will investigate two microfluidic cooling technologies. First, implementing varied size microfluidic channels close to the silicone substrate of the IC. Additionally, a micro-pin fin heat sink is integrated into the ICs’ fluidic microchannels. Different sized pin fins were used, to achieve a wider understanding of the application of pin fins in microfluidic cooling and compare the thermal performances of each cooling method. Integrated cooling subverts the need for suboptimal thermal interfaces and bulky heat-sinks, as well as reducing the intensity of localised hotspots commonly present in high-power electronics. Further, by locating the main heat exchange medium closer to the die of an IC, we reduce the number of thermal interfaces. This meta-study suggests that cylindrical micro-pin fin arrays with pitch longitude and latitude of 60μm and 120μm, are more thermally efficient than plain microfluidic cooling channels.  


Metrics Loading ...

Article Details