Efficiency of 2D Photonic Crystal Emitters in Thermophotovoltaic Systems
Main Article Content
Abstract
Thermophotovoltaic (TPV) systems have the potential to convert energy in a very efficient way by using 2D photonic crystal (PhC) emitters. Recent advancements in TPV technology have developed many methods for effectively generating power. These recent advancements propose that emitters can suppress low energy photon emissions while increasing higher energy photon emissions. This can be achieved by utilising new 2D photonic crystal (PhC) structures on the surface of the emitter with varying diameter and shape.
In this meta study we consider the multiple design fabrications of photonic crystal emitters and compare the efficiencies, power densities, and their potential use for converting different wavelengths into heat and power. This is done by analysing the thermodynamic factors present in the system that could potentially reduce the efficiency, and therefore power generation, of the thermophotovoltaic cell. This study found that certain shapes and materials can impact on the PhC structure and its ability to emit energy.
Metrics
Article Details
Authors who publish with this journal agree to the following terms:
a) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
b) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Open Access Citation Advantage Service). Where authors include such a work in an institutional repository or on their website (ie. a copy of a work which has been published in a UTS ePRESS journal, or a pre-print or post-print version of that work), we request that they include a statement that acknowledges the UTS ePRESS publication including the name of the journal, the volume number and a web-link to the journal item.
d) Authors should be aware that the Creative Commons Attribution (CC-BY) License permits readers to share (copy and redistribute the work in any medium or format) and adapt (remix, transform, and build upon the work) for any purpose, even commercially, provided they also give appropriate credit to the work, provide a link to the license, and indicate if changes were made. They may do these things in any reasonable manner, but not in any way that suggests you or your publisher endorses their use.