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Abstract:  
Thermophotovoltaic (TPV) systems have the potential to convert energy in a very 

efficient way by using 2D photonic crystal (PhC) emitters. Recent advancements in 

TPV technology have developed many methods for effectively generating power. 

These recent advancements propose that emitters can suppress low energy photon 

emissions while increasing higher energy photon emissions. This can be achieved by 

utilising new 2D photonic crystal (PhC) structures on the surface of the emitter with 

varying diameter and shape. 

In this meta study we consider the multiple design fabrications of photonic crystal 

emitters and compare the efficiencies, power densities, and their potential use for 

converting different wavelengths into heat and power. This is done by analysing the 

thermodynamic factors present in the system that could potentially reduce the 

efficiency, and therefore power generation, of the thermophotovoltaic cell. This study 

found that certain shapes and materials can impact on the PhC structure and its ability 

to emit energy.  

Keywords: Thermophotovoltaic (TPV), thermodynamics, efficiency, power density, 

2D photonic crystals,  
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1. Introduction 

Thermophotovoltaic (TPV) cells are capable of converting thermal radiation from man-made 

high temperature sources into electricity through the use of photonic crystals (PhC). This ability 

poses a viable alternative to fossil fuels, which is very beneficial, especially in space stations and 

extraterrestrial habitats where fuel takes up large amounts of cargo space. 
 

The technology was first conceptualised in the early 1960s, and it still remains an active area of 

research today. A basic TPV cell consists of a thermal radiator which emits photons when 

heated, and uses a photovoltaic (PV) cell to convert these photons into usable energy. In practice, 

not all of the photons that reach the PV cell will have suitable energies for the band gap of the 

semiconductor in the PV cell, so it is important to increase the efficiency of the system by 

recycling these photons using a selective filter that lets suitable photons through but reflects 

unsuitable photons back into the radiator. 
 

TPV cells can theoretically boast a high power density, taking up a relatively small amount of 

space for the energy they produce. They are reliable, as they don’t contain a large amount of 

mechanical or moving parts, and they require little to no maintenance to operate for extended 

periods of time. TPV cells work on a similar principal as a PV cell, however, instead of 

converting solar radiation into electricity it converts thermal radiation emitted from high-

temperature sources. The temperatures at which TPV cells work is in the range of 1100-1500 K, 

which, although far less than the temperature of the Sun at over 5000 K, is still extremely hard to 

produce and use, as most materials at this temperature are near their melting point, or are too hot 

for humans to exist within the vicinity of. The only way we can get any form of efficiency is by 

producing materials with a very small band gap e.g. GaSb (Gallium Antimonide) and InAs 

(Indium Arsenide).  
 

A potential way forward in this field is by looking into 2D (PhC) photonic crystals. This idea has 

the possibility to lead to new technology and greater results in terms of the power output of a 

thermophotovoltaic cell. 2D photonic crystals are important in the process as they provide the 

ability to control the motion of photons of light or energy. This can be important in TPV cells as 

it allows control of how much and what type of waves are allowed in. These 2D crystals, along 

with other constantly improving technology, can lead to a better, more efficient way to decrease 

our energy needs and enable us to potentially produce a large amount of energy for longer 

periods of time. 
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Figure 1 : Illustration of a (a) 1D, (b) 2D, and (c) 3D photonic crystal structure 

(http://www.intechopen.com/books/advances-in-photonic-crystals/photonic-crystal-ring-

resonator-based-optical-filters) 2/5/2016 

The TPV system is a photonic heat engine that has thermodynamic limitations caused by entropy 

generation. The maximum efficiency of the system can be calculated by taking into account the 

temperatures of both the heat source and the heat sink. The efficiency can be given by:  

n(carnot) = (Th- Tc)/Th  

Controlling the absorption spectra on the TPV cell is done using the 2D PhC emitters. Large 

peaks in emission are often observed, however these peaks can be selected by suppressing low 

energy photon emissions while further enhancing the high energy photon emissions. 

2. Methods  

This meta study was found on peer review papers publish in this field. The papers studied were 

research papers with first hand data and results. The papers selected for inclusion in this meta 

study were ones that had been referenced to in multiple other papers to ensure reliability in the 

data collected. They have also been chosen as they provide the required information to enable the 

group to get any form of a result.  

Searches within the databases (SCOPUS, Sciencedirect, Google Scholar and Access Science) 

were relating to 2D photonic crystals and thermodynamic processes. The study was restricted to 

2D PhCs with a specific focus on how different materials and different hole shapes are able to 

influence the efficiency and power density of a TPV. This reduced the amount of papers needed 

and enabled more specific information to be acquired. Papers measuring efficiencies of TPV 

cells were collated and organised with respect to the specific design fabrication used and then 

referenced using refworks.  

An analysis of the research papers allowed for comparisons of efficiency in the specific system. 

Compensations were made for differing variables such as wavelength of radiation and 

temperature of the system to allow for the accurate comparison of the data. By unifying these 

variables, assumptions of the performance can be made for different environments. In the cases 

where the efficiency is not given, the performance is compared to a blackbody where radiation is 

absorbed entirely giving a maximum theoretical efficiency of 100%.  

http://www.intechopen.com/books/advances-in-photonic-crystals/photonic-crystal-ring-resonator-based-optical-filters
http://www.intechopen.com/books/advances-in-photonic-crystals/photonic-crystal-ring-resonator-based-optical-filters
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3. Results  

There are numerous fabrication methods that are being used to improve the TPV system. 1D 

(Band gap lines), and 2D, such as Circular holes, Square holes and Hexagonal holes, have all 

been researched, manufactured in some way and have led to very useful knowledge. There are 

differences in terms of cost to produce, different temperature output and the efficiency of the 

cell. 

3.1. 1D (band gap lines) fabrication  

1D PhCs are made of inorganic materials that are in alternating stacks of SiO2 and TiO2 for the 

best result, in terms of the reflection they are able to replicate, the reflective index of SiO2 thin 

films is 1.24 and for TiO2 it is 1.74. This large range of movement of reflection means it is the 

ideal material for reflecting lower and higher wavebands into the system, as shown in Figure 2. 

 

Figure 2 - showing the reflectance of different wavelengths in a material - (Huaizhong Shen et al), 2011 

 

This allows 1D photonic crystals to dramatically improve the efficiency of the TPV system 

however is not the most efficient in terms of spectral control and efficiency. Fabricating 1D PhCs 

is often done by using low-pressure chemical vapor deposition process. Then a ten layered 

structure is created with a gap correlating to the subjected wavelength to ensure correct emission 

spectra is matched. This will give a reasonable result, however  
 

3.2 2D fabrication techniques  
 

The methods of fabricating 2D photonic crystals encountered in this study were the etching of 

holes into the material, or by sputtering the material on top of a bulk substrate. Etching is 

achieved by drilling some holes into a semiconductor, creating the 2D PhC, this traditionally 

occurs along the Z direction, or the direction normal to the incident plane, this requires 

technology that can build these crystals to enable the desired waveguides into a small structure. 

While sputtering involves ejecting particles into a material, causing bombardments and 

energising the particles and releasing heat.   
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3.2.1 Planar vs 2D 

There is a large difference between using a planar sheet of material which is a 1D structure and 

2D PhC structures. This is shown by an experiment measuring the emittance of both the planar 

and 2D emitter, in this case using Tungsten as shown in figure 3. 

 

Figure 3 - Normal Emittance vs Wavelength, comparing 2D Tungsten PhC and Planar Tungsten (Celanovic et al), 2011 

 

3.2.2 Selective photon emissions from the PhC fabrications 

Selective photon emissions comes directly from the design structure of the PhC emitters. Factors 

affecting the emission wavelength and power density include the shape of the structure as well as 

the diameter. In the first case we will look at the circular hole structure that follows a layered 

pattern in both the x and y planes of the surface. The material analysed is Tungsten with a 

diameter given as a. Comparing the two different structures of the circle we can see the 

wavelength vary as both diameter and temperature vary. The diameter used in figure (a) is 2.00 

micrometers. 
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Figure 4 - The variation of wavelength as temperature and diameter of the circle increase. 2011 

As we can see the emission spectrum of the 2D PhC is once again much larger than the PhC slab 

at all wavelengths and all temperatures. 

3.3. Differing temperatures and efficiency 

 

Figure 5 - Simulated spectral efficiency of a black body source without spectral control compared with a silicon dioxide PhC with a 
blackbody emitter and PhC with a 2D tungsten emitter. (Celanovic et al.), 2011 
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Figure 6 - Simulated system efficiency and power density of an ideal filter and various silicon oxide PhC emitters. (Celanovic et 

al), 2011 

The 2D PhC emitter used a hexagonal shaped hole pattern with hole diameter 0.8 micrometers. 

Tungsten is a good example of selective spectra control as the high reflectivity of tungsten 

suppresses thermal emission in the longer wavelengths. The tungsten also has a high absorption 

below the 1.8 micro meter range enhancing this wavelength range. 
 

 

Figure 7 - Simulated spectral efficiency and power density of TPV systems as functions of the radiator temperature with an ideal 

filter, modified 1D PhC, original PhC, and no filter. (Lei Mao, Hong Ye), 2001 
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Figure 8 - Efficiency and power density of a PV cell as a function of radiator temperature, for different band gaps, corresponding to the 
PV cell materials InAs(0.35eV), InGaAs(0.55eV), GaSb(0.72eV), Si(1.12eV), and GaAs(1.4eV). (Zenker et al), 2001 

 

As shown in figure 8, in terms of output power density over the smallest change in temperature, 

the ideal material for use in thermophotovoltaic cells being InAs (Indium arsenide). However, 

with the increase in temperature it also has the lowest efficiency, which means it may not be the 

ideal choice as it heats up during use. Another issue with indium arsenide is that the temperature 

required to get any decent power density is close to the melting point of this material, as InAs 

has a melting point of 1215 K. Most papers focus on GaSb for the reason that it is easy to 

manufacture and develop. It also shows similar power density to indium arsenide, but with a 

greater efficiency.  
 

5. Discussion 

 

In this meta study, the papers researched and used had appropriate and similar information. 

However, there were usually only direct correlations with a few of the parameters that wanted to 

be researched. This suggests that more research needs to go into comparing the different shapes 

of the holes. While it was clear that the material being used made a difference to the efficiency 

and power density, it wasn’t clear if it is best to use a circular, square, hexagonal, or even if other 

shapes like triangles can be used to increase the performance of these cells.  
 

6. Conclusions  

To conclude this meta study, several things must be made clear. First of all, the information 

contained within this paper is from a field that has been only slightly studied to the degree that 

other, older fields have. This means that new knowledge is always being found, thus leading to 

new discoveries that may run contrary to this article. Secondly, this paper has focused entirely on 

the thermodynamic side of this study. Everything has been looked at in relation to entropy, 
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enthalpy, and other such variables. Cost has been mostly overlooked, though power density has 

been included to a fair degree, as it is an important variable in this study. 
 

Although it is clear that the shape of holes in 2D photonic crystals leads to a difference in the 

overall performance of the TPV cell, there was not enough evidence in the papers researched to 

conclude the exact differences in performance. It should be noted that the most common hole 

shape encountered was circular. 
 

GaSb and Si based TPV cells were by far the most commonly used across the sources studied. 

This is likely due to the ease of manufacturing TPV cells made from these materials, as well as 

their high power density and efficiency. Although InAs and InGaAs cells displayed superior 

power density to the alternatives, efficiency problems arise as these cells heat up significantly 

during use, and this operating temperature is close to the melting point of the material. 
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