A Meta-study on the Thermal Properties of Carbon Nanotubes in Thermal Interface Materials

Main Article Content

Scott Clarkson
Asah H Khan
Dipendra Singh

Abstract

Computer Integrated Circuit (IC) microprocessors are becoming more powerful and densely packed while cooling mechanisms are seeing an equivalent improvement to compensate. A significant limit to cooling performance is thermal transfer between die and heatsink. In this meta study we evaluate carbon nanotube (CNT) thermal interface materials (TIMs) in order to determine how to maximise thermal transfer efficiency. We gathered information from over 15 articles focused on the thermodynamic parameters of CNT TIMs from databases such as Scopus, IEEE Xplore and ScienceDirect. Articles were filtered by key words including ‘carbon nanotubes’ and ‘thermal interface materials’ to identify scientific articles relevant to our research on TIMs. From our meta study we have found that enhancing CNTs will provide the best improvement in TIMs. The parameters analysed to determine TIM performance included thermal resistance, thermal conductivity and the effect of CNT concentration on computer operation time. Through our investigation we understood that increasing the concentration of CNT from 0 to 2 wt % increases the operation time from 75 seconds at 66°C to 200s at 63°C as well as increasing the thermal conductivity by 1.82 times for the AS5 thermal paste with 2 wt % CNT. Furthermore, CNT TIM pastes with less thickness have a lower thermal resistance of 0.4 K/W. However not all these parameters have been tested with computer chips. This means that in order to increase current heat transfer efficiency limit, we must integrate these parameters into experimental models.


Keywords: Thermal Interface Material; Thermal Paste; Carbon Nanotubes; Thermal Transfer Efficiency; Integrated Circuit; Heat Sink; Heat Dissipation.

Article Details

Section
Articles