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Abstract: Generation III+ reactors are the latest generation of Nuclear Power Plants to enter 

the market. The key evolution in these reactors is the introduction of stringent safety 

standards. This is done through thorough incident scenario analysis and preparation, 

resulting in the addition of novel active and passive auxiliary safety systems, affecting the 

power consumption in the balance of plant. This paper analyses the parameters of PWR 

power plants of similar design, to determine the parameters for optimal efficiency, regarding 

gross and net electrical output, determining the impact the balance of plant has on this 

efficiency.  

While two of the three main factors affecting the Rankine cycle – boiler pressure and steam 

temperature – behaved as theoretically expected, there was a notable point of departure with 

the third parameter – condenser pressure.  The relationship between steam temperature and 

gross electrical efficiency was linear across all reactors but the relation between the steam 

temperature and the net electrical efficiency ceased to be linear for secondary loop steam 

temperatures above 290°C. The relationship between boiler pressure and both gross and net 
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electrical efficiency was linear, proving the Rankine cycle. A relationship was not observed 

between the condenser pressure and either the gross or net electrical efficiency 

Keywords: Efficiency; Nuclear Fission; Rankine Cycle; Boiler; Condenser; Steam; 

Pressure; Temperature; Generation III+; Thermodynamics; Advanced Nuclear Reactor; 

Pressurised Water Reactor; 

 

Table 1. Abbreviations 
PWR Pressurised water reactor 
LWR Light water reactor 

 
 Table 2. Nomenclature  
Ɛ    Thermal efficiency (%) 
W Work done 
Qc Cold reservoir enthalpy 
QH Hot reservoir enthalpy 
Wnet Total work generated 
Qb Heat in the boiler 
Qc1   Negative heat in the boiler 
Wt Work output of the turbine  
Wp Work input for the pump  

 

Table 3. Definitions 
Primary loop Loop transmitting heat from Reactor Core to Secondary Loop  
Secondary loop Loop converting thermal energy to mechanical work via turbine 
Enthalpy Heat content of a system 
Isentropic A process with no change in entropy 

Generation III+ Reactor 
Improved Generation III reactor designs entering operation at the time of 
publishing 

Small Modular Reactor Smaller reactors designed to work in connected arrays or for smaller 
power needs in remote areas 

Pressurised Water 
Reactor 

Reactors with light water coolant in the primary loop kept at a constant, 
high pressure 

Rankine Cycle Thermodynamic cycle in the secondary loop 

T-S diagram  A diagram comparing the temperature and entropy of a system  

Balance of Plant 
All supporting components and auxiliary systems needed to operate the 
plant, aside from energy generating system itself. 
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1. Introduction 

1.1 Background 

Nuclear Fission power generation has been a longstanding competitive market since it first entered 

commercial viability which can be dated to the first operational commercial plant in 1957(1). 

Problematically, a prolonged period of stagnation due to the lack of long-term and economically viable 

progress throughout the 20th century limited the commercial market in the west while high profile 

failure incidents like Chernobyl and Three Mile Island contributed to a cultural and political alienation 

of fission power generation. 

This renewed interest in reactor design and the continuing pressure of old reactors being 

decommissioned has led to the implementation of early Generation III reactors, however there was a 

general sense of disappointment over the physical implementation of these designs as stringent yet 

constantly changing safety guidelines defocused innovation and acted as a stumbling block to wide 

acceptance of these reactors.(2) 

The focus for development of Gen III+ Nuclear Reactors for commercial electricity generation is 

safety innovation over previous generations such as PHRS(3)(Passive Heat Removal Systems) and a 

turn to options suitable for remote areas where smaller more affordable reactors are required for power 

generation. These features have particularly become more relevant in the 21st century following the 

aftermath of Fukushima Daiichi(4) and current iteration advanced reactors will attempt to engage these 

design focuses.(5) 

This paper will explore the relative thermodynamic efficiencies of such advanced PWR SMR and 

Large Reactor systems. This will be especially important as many of these reactors enter a more concrete 

construction stage of development in the coming few years. An analysis of existing literature will be 

used to facilitate an evaluation of the prototype systems in question and a comparison of their viability 

on a thermodynamic level. 

1.2 Basic characteristics of a pressurised water reactor 

1.21 Heat engine principles 

In a nuclear power plant, power is generated by converting the thermal energy released from 

nuclear fission reaction into mechanical work, which is then used to turn a turbine, rotating an 

alternator to produce electrical power. In the case of a PWR, the medium used to transmit this energy 

is steam. The ideal thermodynamic cycle for a steam engine is the Rankine cycle, all power plants 

reviewed operate under such principles. 
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The Temperature-Entropy (TS) diagram shown in Fig.1 displays the overall process for the ideal 

Rankine cycle. A TS diagram is a tool for visualising the parameters related to increasing or decreasing 

the efficiency of an engine. The curve on the TS diagram represents the saturation dome in a 2d plane. 

To the left of the saturation curve, the working medium, in this case, H2O, is in a liquid state. Inside 

the saturation curve, the medium is in a 2-phase state, consisting of liquid and vapor. To the right of 

the saturation curve, the medium is entirely gasseous, so called ‘dry stream.'   

The work produced by the engine cycle is 

represented by the area of the shape plotted from the combined steps in the thermodynamic cycle. The 

work required to be inputted into the engine from an external source is represented by the area 

underneath the cycle. It follows therefore that maximising the area inside the shape while reducing the 

area below the shape will give us a greater efficiency by increasing the work output.  

This means that there are three ways to increase the efficiency of a Rankine engine (7); firstly, 

increasing boiler pressure [process 1-2], secondly increasing the steam temperature [process 2-3], or 

thirdly decreasing the condenser pressure [process 3-4].  

In the first case – increasing boiler pressure shifts the cycle to the left and with fixed volume 

increases the work output of the turbine and the work input of the pump. I.e. there is a heat supply 

increase and a heat rejection increase, implying greater thermodynamic efficiency.  

In the second case – increasing the steam temperature at fixed pressure will raise a corresponding 

increase in the area within the cycle, this also decreases the moisture content in the steam which 

increases the Work output of the turbine without the often corresponding increase in work input 

required by the pump.  

Figure 1. Rankine cycle flow chart(6) Figure 2. T-S diagram of Rankine cycle(6) 
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Finally, in the third case – decreasing the condenser pressure increases the area within the cycle, 

however, this will also increase the moisture content of the steam as it enters the turbine and therefore 

decreases the efficiency of the turbine (as well as introduce issues of corrosion).  

This can also be understood formulaically using the equation of net work in a Rankine cycle engine;  

𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑄𝑄𝑏𝑏 − 𝑄𝑄𝑐𝑐1 = 𝑊𝑊𝑡𝑡 −𝑊𝑊𝑝𝑝 Eq.1 (6) 

1.22 Fission chain reaction 

The neutrons released in the fission reaction interact with the core itself to fission further neutrons, 

thus creating a chain reaction. When this reaction can sustain itself, the core is said to be critical. A 

certain “critical” amount of material is thus required to release enough neutrons to continue the fission 

reaction. 

1.23 Neutron Moderator 

The fast neutrons released from the fission reaction often ‘escape’ the reactor core material without 

creating further fission products. A way to ensure a higher efficiency of neutrons engaging in the chain 

reaction (neutron economy) is to slow down these neutrons to thermal energies, that is, to an energy 

level in which they are in thermal equilibrium with the surrounding material. This is done by the 

introduction of a moderator. The moderator consists of a material with lightweight nuclei which absorb 

the kinetic energy of the neutrons, slowing them to thermal energies, increasing neutron economy and 

reducing the critical mass required in the core. 

1.24 Coolant 

In a PWR, water acts as both coolant and moderator. In the process of neutron moderation, the 

kinetic energy imparted to the water’s nuclei increases its thermal energy. This is the mechanism by 

which the thermal energy is removed from the core. The heated coolant water is kept under constant 

pressure to prevent it from boiling via a pressuriser. This is to prevent any changes in density of the 

coolant system, sustaining a steady flow of the coolant in an out of the reactor core. The water coolant 

system that is in contact with the reactor is kept in a contained loop within the reactor vessel. This is 

done to minimise radioactive products exiting the reactor vessel and increased containment safety. 
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1.25 Steam Generator 

The heat from the coolant loop is transferred to a secondary water loop (feedwater loop), which is 

allowed to vaporise. The steam produced in the feedwater loop is then used to turn a steam generator 

turbine, thus converting the work from the heat engine into electrical energy. The steam is then cooled 

via a condenser back to the liquid phase and the cycle repeats. (7) 

 

 

2. Methods  

This paper is a meta-analysis of existing literature in the field of Nuclear Engineering and as such is 

a study of multiple papers, both on the topic and for wider understanding and appreciation. This 

research was conducted by accessing a variety of databases – Scopus, Science Direct, Access Science 

and Google Scholar – along with a selection of journals – ‘Nuclear Engineering and Design,’ ‘Progress 

in Nuclear Energy,’ ‘Annals of Nuclear Energy’ and ‘Nuclear Engineering and Technology.’  

A major source of individual reactor parameters was the ‘International Atomic Energy Agency’s’ 

‘Advanced Reactors Information System.’ Information from this source was collated and then 

systematically cross-referenced against other sources to ensure accurate recordings. This allowed for 

the construction of a large single table containing parametric data on many reactors, included in the 

appendix for posterity and future research. This, in turn, enabled rapid data mining for relevant factors 

for the paper. 

Figure 4. Conceptual design of a PWR reactor 
plant(7) 

Figure 3. Neutron fission chain 
reaction(8) 
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The scope of all research was restricted to plants currently in late stage development, under 

construction or already operational to maintain a reflection of reality and move away from entirely 

theoretical design choices that had not properly been experimentally verified. This link to more 

concrete reactors served an additional purpose as it meant that the majority of reactors being analysed 

functioned and therefore had fairly rigid thermodynamic parameters. 

This research process was conducted by alternately widening and narrowing the scope of the search. 

Starting with a general perusal of Fission Power Generation the search was then narrowed to an 

analysis of Passive Heat Removal Systems before expanding back outwards to a more general analysis 

of plant efficiency in Gen III+ reactors. By this method, it was possible to ensure that the majority of 

independent and original research retained a use in the finished paper. 

Over the course of this research data was located about a wide variety of plant parameters and to 

define a thesis topic these parameters were compared and graphed against each other. Of particular 

interest was the amount of electrical power that made it into the grid against the total electrical power 

generated by the turbines. It can be assumed that the difference between these figures is the total power 

required by the plant during general operation. 

In order to graph the efficiency versus the various parameters investigated, it was necessary to 

calculate the nominal thermal efficiencies of the reactors, explained here;  

 

The thermal efficiency of a heat engine such as a fission reactor is defined as the efficiency ɛ as shown:  

𝜀𝜀 = 𝑊𝑊
𝑄𝑄𝐻𝐻

    Eq.2(9) 

 

More constructively since W (work produced) and QH (heat from the hot reservoir) can be expressed as: 

𝑄𝑄𝑐𝑐 = 𝑄𝑄𝐻𝐻 −𝑊𝑊   Eq.3 (9) 

 

It follows then that the thermal efficiency ɛ can also be expressed as: 
𝑄𝑄𝑐𝑐
𝑄𝑄𝐻𝐻

= 1 − 𝜀𝜀   Eq.4 (9) 
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3. Results and Discussion 

In figures 5-7 displayed below, each coloured marker represents a reactor, with its gross and net 

efficiency denoted by a solid dot and a black outlined dot, respectively. Details of reactors can be 

found in the appendix. 

 

There is a strong linear relationship between steam temperature and the efficiency of the gross 

electrical power output of the plants in question. It would be expected that the Rankine cycle would 

increase the gross output of such an engine, but an increase in efficiency also implies an engineering 

advancement in the heat exchanger, as the heat driving the engine is supplied by the exchange between 

the primary loop and the secondary loop. Therefore, this result can alternatively be read as an 

affirmation that a more efficient heat exchanger effectively creates more work on the turbine at no 

extra work into the system. 

Net efficiency appears to follow a linear relation up until 290 ̊C, above this temperature the net 

efficiency begins to decline. A possible reason for this phenomenon could be that the extra 

thermodynamic work created on the turbine by the higher steam temperatures is not enough to offset 

the economies of scale involved in plant engineering. This relative inefficiency appears to be a result 

of the fact that most reactors examined have a similar absolute operating power requirement 

Figure 5. Steam temperature vs efficiency 
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(approximately 50MWe), but do not necessarily generate similar amounts of electricity. Therefore, in 

smaller power plants a higher percentage of its power output must be used just to keep the plant 

operating than in larger plants – this can be understood as both a thermodynamic and mechanical issue. 

This idea neatly explains the status of many conflicting data points for the curve of the net 

efficiency line. The red points on the graph are the AP1000 which has an operating requirement of 

nearly double every other reactor, so although it superficially seems to be largely less efficient, there 

are factors involved beyond the thermodynamics of the loops. Conversely, the cyan (VVER 640), 

green (OPR1000) and purple (VVER 600) reactors are all reactors with a much lower electrical output 

altogether essentially creating the opposite problem; the fact that they require the same initial input 

depresses the net electrical efficiency. Such a result implies that for large power requirements it is 

more thermally efficient to have one larger reactor than it is to have multiple smaller reactors. 

 
In figure 6, the gross power output of each reactor forms a slight linear trend where most of the data 

points start limiting around 7 MPa, indicating that most reactors have an optimal pressure range which 

lies at the 7 MPa pressure. The net power output shows a positive linear trend suggesting that 

increasing the boiler pressure in a Rankine cycle does increase efficiency which was expected as stated 

in 1.1. This simply put is due to an increase in entropy allowing a greater electrical output. A  reason 

for this cluster of similar boiler pressures is the increased chance of wet steam formation at higher 

Figure 6. Steam pressure vs efficiency 
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pressures (6, 10) Wet steam becomes a concern when it forms, as once it condenses in the later steps of 

the Rankine cycle it causes erosion in the turbine blades.  

 
Figure 7 does not appear to show a linear relationship between condenser pressure and efficiency, 

net or gross. This is counter to what was established earlier about the Rankine cycle in section 1.2, 

which tells us that a decrease in efficiency would be seen with an increase in pressure, in other words, 

it would be expected that any potential trends in data should show a negative gradient. It may be 

possible to establish many factors that attribute to the lack of relation between the two. One such 

explanation is the position of the condensing step in Rankine cycle, which can be seen in Fig.1-2. The 

efficiency of other parameters is dependent on the condenser pressure value, and varying it has a direct 

effect on all steps in the cycle (11, 12). 

 

The complexity of the balance of plant introduced by condenser pressures significantly below 

atmospheric pressure may also be a factor, introducing working input in machinery and piping that is 

not considered in the fundamental Rankine cycle TS diagram (13). 

 

 

Figure 7. Condenser pressure vs efficiency 
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4. Conclusions  

A direct linear relationship can be seen between the steam temperature at the turbine and the power 

plant efficiency. This is in concurrence with the thermodynamics of the Rankine cycle. A limiting 

temperature is observed around 290° for net electrical power efficiency. This may be due to the 

increased work input required by the power plants at such high temperatures, as well as the disparity in 

efficiency created by reactors of different power outputs requiring a similar power input. 

A weaker but still observable linear relationship is seen between steam pressure and efficiency. It is 

noted that the steam pressure is effectively equivalent to the boiler pressure as they are part of the same 

step in the Rankine cycle. A limiting pressure of 7.5MPa is seen, with most reactor pressure fitting in 

the 7-7.5MPa mark.  

No relationship was observable between condenser pressure and efficiency. Previous studies (11-

13) and the laws of thermodynamics tell us that this relationship exists; however it appears to be more 

difficult to optimise directly, due to the complexity of the balance of plant introduced by this 

parameter, as well as the dependence of other parameters on the value of condenser pressure having a 

‘knock on’ effect. 

This suggests that in relation to the first case further focus should be directed towards investigating 

the optimal scale for thermal reactor output as a function of net electrical efficiency. Whereas in 

relation to the third case more investigation into condenser pressure as an optimisation for the Rankine 

Cycle is required. 
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