Meta-Analysis on Optimised Parameters for Energy Harvesting Thermoelectric Generators in the Human Body

Main Article Content

Emily Mays
Stephanie Barakat
Anna Huynh
Josephine Munro

Abstract

Small-scale energy harvesting thermoelectric generators could replace bulky batteries completely when in conjunction with a supercapacitor for biomedical devices. Organic material is cost efficient, flexible and easily processed but has poor thermoelectric properties. Recent studies have investigated the combination of inorganic and organic materials for thermoelectric materials in an attempt to improve the figure of merit, Seebeck coefficient and power factor. This meta-study examines the most effective ratio of PEDOT: PSS to Bi2Te3 thermoelectric material by analysing the Seebeck coefficient, electrical and thermal conductivity, the power factor and figure of merit for varying weight-for-weight percentage of PEDOT: PSS material. This paper also assesses the viability of hybrid thermoelectric materials with a focus on the synthesis process. The parameter of the thermal gradient found in the human body was used; approximated to 32-37°C from the human body to the ambient temperature of ~300 K. It was found that the peak in electrical conductivity was between 90%―96% PEDOT: PSS material. From this the optimal ratio of PEDOT: PSS to Bi2Te3 is between 90%―96% PEDOT: PSS material since the Seebeck coefficient decrease with increase organic percentage smoothly. Overall, this study suggests the use of an organic: inorganic hybrid TEG, coupled with a supercapacitor, is a commercially viable device for a variety of implantable biomedical devices.

Metrics

Metrics Loading ...

Article Details

Section
Articles