Meta-study Focusing on Abiotic Cells for Human Implants

Main Article Content

Mitchell Healey
Julian Lee

Abstract

Abstract: Powering implantable devices in human body with a glucose based fuel cell (GFC) offers an alternative to non-rechargeable batteries that typically require routine invasive surgery. There are three main approaches for GFCs to oxidise glucose. Enzymatic Fuel Cells are selective and have a high reaction rate but are unstable as the proteins can denature giving the cell a short lifespan. Microbial Fuel Cells use microbes to break down glucose to produce electrons. However they possess the danger of cell leakages that can introduce the microbes to the patient and risk possible infection. Abiotic Fuel Cells employ inorganic catalysts, typically a noble metal alloy or metallic carbon to oxidise and reduce glucose and oxygen respectively. Abiotic is the safest and most stable of the three but possesses the lowest output due to the electrodes inability to target glucose specifically.

This meta-study investigates for Abiotic Glucose Fuel Cell being the most viable candidate of the three for possible use in autonomous medical devices. We will assess current abiotic fuel cells on the thermodynamic parameters of output voltage, current/current density, power density and efficiency. The kinetic parameters of internal resistance and rate at which membranes transport electrons will also be assessed. Operational parameters of lifespan and overall architecture will also be assessed to further understand the conditions and materials these cells were produced.

Keywords: Glucose; Fuel Cell; Meta-study; Enzymatic; Microbial; Abiotic; Implantable Devices


Metrics

Metrics Loading ...

Article Details

Section
Articles