Photovoltaic Cell: Optimum Photon Utilisation
Main Article Content
Abstract
In the 21st century, global energy consumption has increased exponentially and hence, sustainable energy sources are essential to accommodate for this. Advancements within photovoltaics, in regards to light trapping, has demonstrated to be a promising field of dramatically improving the efficiency of solar cells. This improvement is done by using different nanostructures, which enables solar cells to use the light spectrum emitted more efficiently. The purpose of this meta study is to investigate irreversible entropic losses related to light trapping. In this respect, the observation is aimed at how nanostructures on a silicon substrate captures high energy incident photons. Furthermore, different types of nanostructures are then investigated and compared, using the étendue ratio during light trapping. It is predicted that étendue mismatching is a parasitic entropy generation variable, and that the matching has an effect on the open circuit voltage of the solar cell. Although solar cells do have their limiting efficiencies, according to the Shockley-Queisser theory and Yablonovitch limit, with careful engineering and manufacturing practices, these irreversible entropic losses could be minimized. Further research in energy losses, due to entropy generation, may guide nanostructures and photonics in exceeding past these limits.
Keywords: Photovoltaic cell; Shockley-Queisser; Solar cell nanostructures; Solar cell intrinsic and extrinsic losses; entropy; étendue; light trapping; Shockley Queisser; Geometry; Meta-study
Metrics
Article Details
Authors who publish with this journal agree to the following terms:
a) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
b) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Open Access Citation Advantage Service). Where authors include such a work in an institutional repository or on their website (ie. a copy of a work which has been published in a UTS ePRESS journal, or a pre-print or post-print version of that work), we request that they include a statement that acknowledges the UTS ePRESS publication including the name of the journal, the volume number and a web-link to the journal item.
d) Authors should be aware that the Creative Commons Attribution (CC-BY) License permits readers to share (copy and redistribute the work in any medium or format) and adapt (remix, transform, and build upon the work) for any purpose, even commercially, provided they also give appropriate credit to the work, provide a link to the license, and indicate if changes were made. They may do these things in any reasonable manner, but not in any way that suggests you or your publisher endorses their use.