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Abstract: This meta-study draws upon previous research on both Enhanced Geothermal 

Systems (EGS) and traditional geothermal systems (GS), using these findings to compare 

and investigate the thermal efficiency of each system. Efficiency calculations include 

reservoir enthalpy, maximum drilling well temperature, power output (per unit mass of 

liquid) and mass flow rate of these systems to determine whether EGS’s are viable as an 

alternative, more readily available renewable energy source. This meta-study suggests that 

EGS are more viable than naturally occurring GS in the context of future geothermal energy 

production as they perform with a similar average efficiency of 10-15% and, in addition, can 

be used in a wider range of geothermal environments. 
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Nomenclature 
 

GS Traditional Geothermal Systems 

EGS  Enhanced Geothermal Systems 

Thermal 
Efficiency 

The ratio between work done on the system (running capacity) and the heat & mass supplied 
to it (mass flow rate & reservoir enthalpy) 

Reservoir 
Enthalpy 

Total heat of a particular geothermal reservoir, equal to the internal energy of the system 
plus the product of pressure and volume 

Geothermal Fluid A gas or liquid used (usually water or CO2) used in heat extraction for geothermal power 
plants 

Permeability A physical property of rock that indicates the ability for geothermal fluids to flow through it. 
A high permeability will allow fluids to pass through it more easily 

Mass Fluid Rate Represents the amount (mass) of a given substance that passes per unit of time, given in 
kilograms per second (Kg/s) 

Installed Capacity The intended (ideal) full-load sustained output capability of an energy facility, given in 
Kilo/Mega/Giga Watts of energy (KWe, MWe, GWe) 

Electrical Output 
Capacity 

The actual (real) electrical energy output of a system, given in Kilo/Mega/Giga Watt hours 
(KWh, MWh, GWh). This can also be KWe, MWe, GWe given a moment in time 

Base Load The minimum amount of electrical energy on demand over a period of time, given in 
Kilo/Mega/Giga Watt hours (KWh, MWh, GWh) 

 
  
 

1. Introduction 

Traditional geothermal energy originates from differential temperatures between the earths molten 

core and its crust. The heat exchange between these layers causes less dense material and water in the 

earth’s mantle to significantly heat up, inducing an outwards convection of thermal energy [1]. Suitably, 

areas of existing thermal activity such as volcanic regions and tectonic plate boundaries have been the 

sites of traditional geothermal power generation, as geography provides the important elements for 

constant and effective energy extraction [1]. 

 

The most significant limitation with naturally occurring geothermal energy is in its lack of 

geographical versatility. Power plants such as the Wairakei Power Station in New Zealand, for example, 

relied upon its ideal location above the ‘Taupo Volcanic Zone’ where energy could be captured from 

steam arising from subsurface heated water channels [1]. In this region, shallow crust magma supplies 

heat to large deposits of clay and alkali-chloride rich hot springs to produce recorded temperatures 

greater than 230°C [1]. Similarly, in Japan, Russia, Mexico, Iceland, Indonesia, Philippines and the West 

coast of North America, geographical location has provided the heat, fluid and rock permeability 

resources for practical and economic geothermal energy development [2]. For much of the world, 

geothermal power has been an impossibility, due to lack of the major hot water reservoirs that could 

supply enough energy for a system to have efficient operational outputs.  
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In the mid-20th century, many influential governments around the world including China, India and 

the United States began to recognise the need for an increased renewable energy infrastructure to sustain 

the growing demand and increased consumption of electricity [3]. Technological mining developments 

in drilling, allowing for extended drill depth capacity in the 1970’s and progressive research into 

geothermal engineering processes provided a solution to overcome the restrictions and limitations of 

traditional geothermal systems. This breakthrough was the introduction to enhanced geothermal systems, 

which in the U.S. alone was thought to possess just over 100GWe of economically attainable potential 

electrical capacity [4]. 

 
2. Enhanced Geothermal Systems 

An enhanced geothermal system provides the possibility of resolving many of the limiting 

requirements of traditional geothermal power stations. The rationale for EGS is eliminating the need for 

pre-existing thermal activity. For a traditional GS, temperatures of 300°C or greater were essential for 

an effective geothermal operation. In EGS subsurface fractures are formed by drilling at significantly 

lower depths (3-10km in comparison to a few hundred meters). These are cracks within the earth that 

allow for a geothermal fluid (usually water) to be injected through a rock fracture system [4]. Because 

of this, it is theorised that EGS’s could operate with similar efficiencies at as little as half the of the 

temperature at which GS systems operate [3].  

 

Unlike a traditional system, alternative geothermal liquids can be chosen to maximize mass fluid rate 

and increase the systems internal enthalpy. Particular oils and gases such as supercritical CO₂ have been 

shown to further fracture the earth and artificially increase its permeability [5]. Upon contact with the 

earth, the geothermal fluid is naturally heated and brought back to the surface using a steam turbine or a 

binary power plant system to convert the heat energy into electricity [4]. Figure 1 below gives a visual 

operational representation of an enhanced geothermal system. 
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Figure 1: “A schematic of a conceptual two-well enhanced geothermal system in hot rock in a deep 
permeability crystalline basement formation” [4]. 

 
Currently, geothermal power only accounts for 0.3% of the global electricity supply [7]. From 1950 

to 2015 the total worldwide install capacity and power generation from geothermal power plants has 

steadily increased. It is predicted to almost double from a capacity of 12,635 MWe and an energy output 

of 73,549 GWh in 2015 to a capacity of 21,443 MWe with an uncalculated energy output production 

[8]. The figures below illustrate the relationship between installed capacities versus produced energy to 

gauge the growth of geothermal power production. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: represents the “total worldwide installed capacity from 1950 up to the end of 2015 and short 

term forecasting” [8]. 
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Figure 2: A line graph showing the worlds geothermal energy production from 1950 up to 2016. 

Installed capacity (Left, MWe) and produced electricity (right, GWh) [8]. Whilst installed capacity 
shows an exponential trend in growth from 1950 to 2020, produced energy shows a more linear 

progression. 
 
 

 

Figure 3: “Worldwide Install capacity of geothermal systems in 2015 [12.6 GWe] [8]” Showing that 
Asia Pacific is the biggest contributor to geothermal installed capacity, followed by North America, 
Europe, Latin America then Africa. Individually the United States supports all geothermal energy 

production in North America (3,450 MWe). Alternatively, the Asia Pacific region has been broken into 
4 primary contributors notably, Japan (519 MWe), Philippines (1,870 MWe), Indonesia (1,340 MWe) 

and New Zealand (1,005 MWe). Australia contributes less than 0.03% to the Asia Pacific’s geothermal 
energy production. 
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These figures indicate that production of geothermal energy is predicted to increase exponentially in 

the next 5 to 10 years (shown in Table 1 and Figure 2). However, traditional geothermal systems remain 

dominant. EGS has so much potential that it is most likely it will surpass GS in the future. This is shown 

in Canada where the potential for EGS is significant. “There are an estimated 15,000 MWe or more 

available in untapped geothermal locations, 10,000 MWe of which are limited to an EGS set up” [8]. 

The results of this meta-study could inform future decision-making in regards to whether EGS represent 

a worthwhile investment for future energy Infrastructures. 

3. Methods  

The meta-study was conducted over three months by reviewing independent scientific reports and 

articles regarding power generation of both traditional and enhanced geothermal systems. Referenced 

sources were collected from ProQuest Science & Technology, Science Direct (Elsevier), Access Science 

and Web of Science Core Collection with a focus on reports less than 10 years old. Data was collected 

on six primary geothermal power attributes, including reservoir enthalpy, maximum primary well 

temperature, total system power output, mass flow rate of geothermal fluids, electrical output capacity 

and overall thermal efficiency. From this raw data, significant trends and figures were tabulated and 

graphed (represented in Figures 4-7).  

Not all data variables for GS and EGS were attainable in our research. Some raw data tables were left 

incomplete for many of the calculations intended to be used in this report. Reports that did not supply 

sufficient data on well temperature, total system power output and types of geothermal fluids were 

excluded from averaging calculations, as they could not be derived any other way. Alternatively, 

unknown attributes such as thermal efficiency, net electrical output capacity, mass flow rates and thermal 

enthalpies, could be calculated by Equation 1 show below. 

𝜼𝜼𝒂𝒂𝒂𝒂𝒂𝒂 (%) =  
𝑾𝑾

ṁ × 𝐡𝐡
 × 𝟏𝟏𝟏𝟏𝟏𝟏 

 

 

Nact (%) Thermal (heat) efficiency of the entire system 

W 
Work done on a system, represented by the output capacity (kWe). Measurement of the 

electrical output capacity 

ṁ Mass of the system represented by the total mass flow rate (kg/s), mass of geothermal fluid 
passing through the system 

h Heat supplied to they system represented by the reservoir enthalpy (kJ/kg) – total internal 
radiant heat of the reservoir 
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 Efficiencies of most GS were obtained from articles, by looking at raw data within the report. This 

ensured that all collected statistics were direct links to one specific power station and were not further 

elaborated on. This was to prevent any confusion between what was known to be fact and what was 

hypothetical analysis; however, many EGS attributes were not readily available. A multitude of reliable 

sources was carefully inspected before efficiency values were obtained.  Finally, conclusions were 

drawn, using the evidence from the graphs and tables to establish which of the two geothermal system 

types was more efficient in terms of their general energy input vs power output and convenience of their 

geographical location. 

4. Results and Discussion 

An analysis found that within a search of 50 papers on the topic of geothermal energy production, 45 

compared the output thresholds of only traditional geothermal systems, constructed before the 

introduction to EGS, while only five extensively mentioned EGS. As a relatively uncovered point of 

discussion, this report extrapolates data from papers and direct sites to draw a useful comparison between 

GS and EGS. Thermal efficiency analysis has focussed on four data variances; system electrical output 

capacity (Figure 4), well depth (Figure 5), enthalpy (Figure 6) and well temperatures (Figure 7). In doing 

so, the results cover comprehensive output figures that compare modern EGS with GS within their 

unique geographical parameters. This report illustrates the potential for regional scale implementation 

of geothermal power when traditionally geothermal systems are large-scale state wide operations.  

 

All graphs below (Figures 4-7) compare the thermal efficiency of both GS and EGS systems against 

a relevant base parameter. Each parameter is a factor that can be controlled individually by the system 

operators to attain an optimal thermal efficiency. The comparison of these was made to understand if 

they could perform at the same efficiency as GS given that they operate at much lower temperature 

standards and can be developed in a much larger range of locations. 

 

In comparing electrical output capacity versus thermal efficiency no obvious trends were found with 

GS or EGS. Out of 26 independent power stations, 21 GS had an average electrical output capacity of 

97.8 MWe, while five EGS had an average electrical output capacity of 130 MWe. Two outlying data 

points significantly brought up these two averages, these being from the Cerro Prieto GS power plant in 

Mexico, and the Larderello EGS power plant in Italy, these plant were created to produce larger scale 

electrical energy when compared to the rest of the data points. 
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Figure 4. A scatter plot comparing the thermal efficiencies of the geothermal systems varying against 
their electrical output capacity. 

 
 

Currently, geothermal power operates as a contributory source of energy supplied to cities and towns 

as part of a large-scale power grid, where different power generation methods (coal being the largest 

contributor in most countries) are used to reach the required base load. On average the amount of energy 

required for a developed city of 1 million people at any given time is roughly 1500 MWe for a standard 

base load [8]. Given values from Figure 4, both GS and EGS would currently hold placement within the 

small-medium scale bracket for current renewable energy systems. Despite this, comparing the two 

outlying electrical capacities shows that EGS has a much higher future growth potential than current 

traditional geothermal systems as a thermodynamically more viable case for increased investment in 

future sustainable energy. 

 
Results gathered from well depth, and thermal efficiency comparisons were to a large extent 

inconclusive as it showed no clear trends connecting individual data points. Between both GS and EGS 

systems, independent system well depth averages were found to be 2.2 km, despite all papers expressing 

that EGS require significantly lower drilling capabilities. 
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Figure 5. A scatter plot comparing the thermal efficiencies of the geothermal systems varying against 

its primary well depth 
 

In the search for well depth data, three research papers concluded that particular depths had an 

influence on the efficiency of a geothermal system. It has been suggested that the reservoir enthalpy 

influences how much heat is extracted [32]. Theoretically, this does make sense as increasing depths 

would bring a system closer to the earth’s molten core, but our results did not indicate this. External 

geographical factors including ground permeability and below surface temperature all influence the final 

well depth of a geothermal system. As a result, it could not be concluded that well depth had an impact 

on the amount of heat extracted or the thermal efficiency, rather it was the location that supplied the heat 

that influenced the well depth. From this, it suggests that due to enhanced geothermal systems 

geographical versatility, future renewable energy investments in geothermal power would lend itself to 

a system that utilised ground permeability rather than well depth to extract maximum energy supplies to 

reach higher thermal efficiencies. 

 

For the reservoir enthalpy calculations, only three EGS values were usable, dissimilar to the other 

discussion figures (4, 5, 7) that contain all five EGS power plant values. This lack of data was due to 

difficulty in accessing all related data for EGS. Many privately owned power plants did not disclose their 

performance figures, meaning only three EGS reference points (Bruchsal, Germany; Berlín, El 

Salvadore and Larderello, Italy) could have a use for this analysis. The enthalpy of a system is an 

important measure as it shows the total heat and therefore energy of the reservoir. Figure 6 shows a well-

distributed scatter plot of the systems thermal efficiency against reservoir enthalpy. 
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Figure 6. A scatter plot comparing the thermal efficiencies of geothermal systems varying against 

their overall internal reservoir enthalpy 
 

If viewed from a thermodynamic standpoint it would be expected that as enthalpy increases, 

efficiency would also increase. The above data does not clearly discern this; instead, it shows no clear 

relation between energy efficiency and enthalpy. On the other hand, it does demonstrate that EGS 

perform within a consistent range of GS efficiency, in that they are found to occupy the middle (10-15% 

efficiency) of the GS data set. This again suggests that EGS have a versatility that GS can’t provide, 

operating with the same efficient transfer of heat energy to electrical power despite significantly less 

influence from a thermally active area. 

 

Once again, both GS and EGS are seen to produce a similar scatter of results. This time a trend appears 

from the collection of data points and is illustrated in Figure 7 as two separate positively increasing 

linear lines. Note that the gradient for EGS is slightly greater than the slope for GS, and a projection 

would show that the two lines would intercept each other at between 70 and 80oC. 

 

Well temperature is a fundamental element in a geothermal system, as many systems require a 

minimum amount of heat to convert a ‘working’ geothermal fluid to vapor. While both trend lines display 

increasing efficiencies as well a temperature increases, no accurate conclusion can be made about the 

GS as it does not have a linear relationship between efficiency and well temperature. This suggests that 

there are other factors such as plantation types that were not the focus on this report, that affect its 

efficiency. The linear relationship fits with EGS as its value range sit much closer to the averaging line. 

The EGS shows an ability to produce a linear trend increasing its output data reliability. A new plantation 
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could use this data to gather a greater understanding of its potential final energy outputs and output 

efficiencies. 

  

 
Figure 7. A scatter plot with averaging trend line comparing the thermal efficiencies of the geothermal 

systems varying against its primary well temperature. 
 

It is important to note the limitations in accessibility and availability of data specific to enhanced 

geothermal systems. Results that were crucial for this discussion including reservoir enthalpy and 

maximum well depth were simply not provided by many of the independently run private geothermal 

power stations. Understandably for EGS, this is likely because it is still a relatively new form of 

geothermal energy extraction and is in its early stages of development.  Fortunately, many governmental 

agencies, including the U.S. ‘Department of Energy’, the New Zealand ‘Ministry of Business, 

Innovation, and Employment’ and Australia’s own ‘Department of Environment and Energy’ operate 

with a higher level of transparency and provide public access to outstanding amounts of energy data.  

5. Conclusions  

Out of the 14 EGS investigated, only five had enough open access information to be included in this 

meta-study. Comparatively, a traditional geothermal system is a technology that has been utilized for a 

far longer time, and thus, had larger amounts of available credible data. Because much of the data for an 

EGS is limited, future studies need to be conducted to make more informed and reliable comparisons. 

Additionally, further comparisons need to be made for EGS in different locations, to analyse optimal 

alternative geographical areas. Research in this area could enable scientists and engineers to adapt 

individual systems to their unique locations, thereby maximizing the efficiency on an ad-hoc basis. 
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This study analysed data from five enhanced geothermal systems, and 21 traditional geothermal 

systems to compare the efficiencies of both systems with regards to electrical capacity, reservoir 

temperature, well depth and working fluid/reservoir enthalpy. This comparison highlighted the ability 

of EGS to perform equally as well as GS in all researched aspects. Resultantly, it can be suggested that 

due to an EGS's ability to be used in a much wider variety of regions, it is overall the more attractive 

energy system for future investments in sustainable energy. 

 

The results indicated that thermodynamically an EGS has the capability of producing thermal 

efficiencies equal to, if not greater than current full-scale operational GS while overall providing a 

significantly more controlled system. This control enables engineers’ choice over size and scale of 

operations, tailoring conditions to match the demands of any given energy requirement (currently 

ranging from 100 kWe to 800 MWe) [37]. These findings suggest enhanced geothermal systems as a 

promising alternative to traditional geographically limited systems. Aided by a wider scope of available 

data in the future, research can be targeted towards determination of an optimal EGS set for specific 

locations as their use increases world-wide. 
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Appendix 1 – Data used for analysis of GS and EGS 

Geotherma

l Type 

Plant 

name 

Type Capacit

y 

(MWe) 

Max. 

Dept

h (m) 

No. 

Productio

n wells 

Reservoi

r 

Enthalp

y (kJ/kg) 

Max. 

temp 

(Celsius

) 

Mass 

flow 

rate 

(kg/s) 

Thermal 

Efficienc

y 

Reference

s 

GS Amatitlan 

Guatemala 

Binary 

Organi

c 

Rankin

e Cycle 

25.2  - 4 1300 285 85.7 11.30% [11], [12] 

GS Ngawha 

New 

Zealand 

Binary 

Organi

c 

Rankin

e Cycle 

75 2300 3 975 320 239.4 16.10% [13], [12] 

GS Wairakei 

New 

Zealand 

Binary 

Organi

c 

Rankin

e Cycle 

171  - 53 2750 240 957.6 18.00% [14] 

GS Rotokawa 

New 

Zealand 

Binary 

Organi

c 

Rankin

e Cycle 

34 2500 14 1550 300 76.4 20.00% [11], [12] 

GS Chena Hot 

Springs 

USA 

Binary 

Organi

c 

Rankin

e Cycle 

0.21 915 2 306 73.3 33.4 8.00% [15], [16], 

[17] 

GS Brady Hot 

Springs 

USA 

Binary 

Organi

c 

Rankin

e Cycle 

4.33 - - 750 108 484.1 8.00% [12] 
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GS Heber USA Binary 

Organi

c 

Rankin

e Cycle 

6.87 - - 702 165 126 13.20% [18], [12] 

GS Ahuachapa

n El 

Salvador 

Double

-Flash 

95 1500 16 1115 280 410 9.50% [12], [19] 

GS Hellisheidi 

Iceland 

Double

-Flash 

210 2195 30 1365 300 1431.

1 

5.40% [20], [22] 

GS Hatchobaru 

Japan 

Double

-Flash 

110 2300 20 1068 300 700 7.40% [23] 

GS Cerro 

Prieto 

Mexico 

Double

-Flash 

720 4400 164 1396 315 1195.

2 

21.60% [24], [25] 

GS Mori Japan Single-

Flash 

50 3000 10 1199 260 434.4 4.80% [26] 

GS Miravalles 

III Costa 

Rica 

Single-

Flash 

27.5 - - 1038 159 320.6 4.10% [27] 

GS Svartsengi 

Iceland 

Single-

Flash 

74.4  - 13 1148 240 199.6 16.20% [39] 

GS Nesjavellir 

Iceland 

Single-

Flash 

120 2200 10 1503 300 228.6 17.50% [30] 

GS Uenotai 

Japan 

Single-

Flash 

28.8 800   2350 300 85.7 7.20% [31] 

GS Onikobe 

Japan 

Single-

Flash 

12.5 500 12 1020 240 157.5 3.90% [11], [12] 

GS Takigami 

Japan 

Single-

Flash 

28     925 198 68.5 6.70% [28] 

GS Olkaria  

Kenya 

Single-

Flash 

45 2500 31 2120 152 103.3 15.00% [39] 
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GS Los 

Azufres 

Mexico 

Single-

Flash 

195 3500 39 2030 180 391.3 12.30% [12], [33] 

GS Kizildere 

Turkey 

Single-

Flash 

20.4 2261 9 875 190 320.8 12.00% [34] 

EGS Bruchsal 

Germany 

Binary 

Kalina 

0.55 2542 1 1800 123 28.5-

l/s 

12.70% [7] 

EGS Neustadt-

Glewe 

Germany 

Binary 

Organi

c 

Rankin

e Cycle 

0.21 2250 2 - 99 35-l/s 7.50% [7] 

EGS Altheim 

Austria 

Binary 

Organi

c 

Rankin

e Cycle 

1 2300 1 - 106 82-

kg/s 

7.70% [7] 

EGS Berlín El 

Salvador 

Binary 

Kalina 

54 1250 14 1300 300 20kg/

s 

14.80% [7] 

EGS Larderello 

Italy 

Double

-Flash 

594.5 3000 200 2770 270 771.1 13.90% [7], [10] 

 

 

 

 


