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Abstract— A hybrid system for detecting driver 

drowsiness was examined by using piezofilm movement 

sensors integrated into the car seat, seat belt and steering 

wheel. Statistical associations between increase in the 

driver drowsiness and the non-invasive and conventional 

physiological indicators were investigated. Statistically 

significant associations were established for the analysed 

physiological indicators – car seat movement magnitude 

and (electroencephalogram) EEG alpha band power 

percentage.  All of the associastions were physiologically 

plausible with increase in probability of drowsiness 

associated with increases in the EEG alpha band power 

percentage and reduction in the seat movement 

magnitude. Adding a non-invasive measure such as seat 

movement magnitude to any combination of the EEG 

derived physiological predictors always resulted in 

improvement of associations. These findings can serve as 

a foundation for designing the vehicle-based fatigue 

countermeasure device as well as highlight potential 

difficulties and limitations of detection algorithm for such 

devices. 

 

 
Index Terms—driver fatigue, drowsiness, detection 

algorithm,  seat movements, EEG, alpha activity. 

 

 

 

I. INTRODUCTION 

 

Driver drowsiness is recognised as an 

important factor in the motor vehicle accidents 

[4,10,15]. It has been shown that a number of 

physiological indicators such as the spectral content of 

electroencephalogram (EEG) [9,11,12,17], blink rate 

[20], individual blink parameters [2] and degree of eye 

closure (PERCLOS) [5] are associated with the 

increase in drowsiness [10] and can respectively be 

used for detecting driver drowsiness.  

 

Compumedics Medical Innovation Pty Ltd, 

Australia proposed application of non-invasive 

piezofilm movement sensors that can be incorporated 

into car seat, seat belt and steering wheel [1]. These 

sensors are potentially capable of recording patterns of 

driver’s movements, breathing and even heart rate that 

could be used for identifying the level of drowsiness. 

Another aspect of Compumedics patented technology 

includes integration of different kinds of signal 

analysis including morphological processing of EEG 

and eye movement patterns that was successfully used 

for automatic analysis of sleep recordings [16]. 

 

The objective of this article is to establish 

statistical associations between increase in the driver 

drowsiness and the non-invasive physiological 

indicators proposed by Compumedics as well as to 

demonstrate increase in the strength of these 

associations in the hybrid system when a “gold 

standard” indicator (EEG spectral content) is combined 

with the non-invasive piezofilm movement sensors 

embedded in the car seat. The identified statistical 

associations can serve as a foundation for designing the 

vehicle-based fatigue countermeasure device as well as 

highlight potential difficulties and limitations of 

detection algorithm for such devices. 

 

This article follows the earlier investigations  [24, 

25] that described the driver simulator study conducted 

as a part of the ARC Linkage grant with University of 

Technology Sydney, Australia, to explore possibilities 

offered by the Compumedics non-invasive and hybrid 
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technologies, introduced the observer driver 

drowsiness scale, explained the data analysis 

methodology and presented results of statistical 

analysis focusing on investigation of associations 

between transition to a state of drowsiness and patterns 

of selected physiological indicators including the 

surface movements of the seat and steering wheel, 

EEG and durations of eye movements. 

 

I. METHODS 

 

A. Car simulator study and data selection 

 

A car simulator study comprising 60 non-

professional fully licensed drivers was conducted at the 

Monash University Accident Research Centre 

(MUARC) in 2005-2006 [24, 25]. The objective of this 

study was to record multitude of physiological signals 

that could be potentially used as components in the 

driver drowsiness detection algorithm as well as a 

number of measures that could be employed as 

independent indicators of the drowsiness level. The 

recorded physiological signals included 10 EEG 

channels, chin EMG (electromyogram), ECG 

(electrocardiogram), left and right EOG 

(electrooculogram), eyelid movement sensor, thoracic 

respiratory band, 8 steering wheel pressure gauge 

signals and multiple signals from the piezofilm sensors 

located on the car seat and steering wheel. The 

movement sensors included 7 sensors on the steering 

wheel, 5 on the back of the seat and 5 on the bottom 

section of the seat. Siesta portable sleep diagnostic 

recording system (Compumedics Pty Ltd, Australia) 

was used for physiological data recording. The 

information for the independent assessment of the 

drowsiness level included 4 video signals, estimate of 

PERCLOS [5] from the FaceLAB system [7] as well as 

a list of driving performance parameters. The 

participants also filled a number of pre- and post-study 

questionnaires such as Lifestyle Questionnaire [4], 

profile of mood states [14], and anxiety state-trait [19].  

 
The developed observer drowsiness rating 

scale [24] included 5 levels similar to those described 

in [22] – from alert to extremely drowsy and was based 

on observing a number of indicators including duration 

and rate of eye blinks and other eye lid movements, 

degree and duration of eye closures, direction and 

focus of eye gaze, patterns of facial, hand and other 

body movements, yawning etc. The appropriate 

dangerous level of drowsiness was selected as 

“significantly drowsy” (level 3) based on appearance 

of eye closure episodes. 

 

B. Statistical associations in question 

 

In [24, 25] we conducted statistical analyses of the 

time courses of different physiological indicators 

during episodes of transitions to the state of significant 

drowsiness. The main findings of these analyses were  

• There was a pattern of reduction in the 

magnitude of seat movements associated with 

transition to the state of significant drowsiness 

with the sensors on the back of the seat 

demonstrating more significant association 

than those on the bottom of the seat; 

• There was a pattern of increase in the 

percentage of EEG alpha activity associated 

with transition to the state of significant 

drowsiness for the central and occipital EEG 

derivations with the former derivation 

demonstrating more significant association 

when correlation is taken into account; 

• There was a pattern of increase in the duration 

of eye movements associated with transition 

to the state of significant drowsiness with eye 

movements scored from the frontal EEG.  The 

eye movement duration calculated from the 

eyelid movement sensor signal demonstrating 

more significant association than that scored 

from EEG (although this finding is based on a 

very small subset of participants); 

• There was a pattern of reduction in the 

magnitude of steering wheel surface 

movement and pressure associated with 

transition to the state of significant drowsiness 

with the movement sensors demonstrating 

significant association in contrast to the 

pressure and both measures having 

substantially less significant associations than 

the seat movement. 

 

Although the method of analysis of the time 

course of physiological indicators during transition to 

drowsiness state by means of fitting linear regression 

models with the correlated observations [3,18,21] 

enabled to establish the described associations there 

were still a number of important questions that it could 

not help to answer 

• What is the association between physiological 

indicators and probability of a predetermined 

state of drowsiness? 

• How can different physiological indicators be 

compared in relation to their association with 

the probability of drowsiness? 

• How can different physiological indicators be 

combined to increase the strength of 

association with the probability of drowsiness 
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and what is the contribution of individual 

measures into the increased association? 

 

Fitting the binary (and potentially nominal/ordinal 

logistic regression models [6]) can potentially address 

these issues. 

 

C. Statistical models 

 

The most general approach to define the 

outcome variable would be to use the same set of 

categories as in the visual scale of drowsiness 

described in [24,25]. However as a starting point for 

analysis covered in this article we employed a binary 

model with the state of drowsiness being defined as the 

drowsiness level of 3 (significant drowsiness) or higher 

while the state of alertness being defined as any 

drowsiness level below 3.  

 

Only the observations recorded during the 

episodes of transition to drowsiness were used in this 

analysis. The rationale for this is that initially we had 

to establish associations that are specific for those most 

important episodes unaffected by other factors that 

could be present during states of prolonged alertness or 

deeper drowsiness. If no statistically significant 

associations are found for the episodes of transition to 

drowsiness the expansion of this method to longer time 

intervals would be pointless.  

 

The observation values for covariates for this 

analysis are formed in the following way. All episodes 

of transition to significant drowsiness are divided into 

non-overlapping 20 second segments. The selection of 

20 s interval was a trade-off between 30 s intervals 

employed in [24] to analyse the seat movement and eye 

movement duration and 10 s intervals used for he EEG 

analysis. For every segment the following values are 
calculated 

• The maximum drowsiness rating out of the 

two 10 second intervals that comprise the 20 

second segement; 

• Seat piezofilm movement sensor data for all 

10 seat sensors calculated as explained in the 

section on the time course analysis but 

averaged over 20 s segments; 

• C4 and O2 EEG derivation data with the 

maximum 2 s alpha band percentage 

calculated over 20 s segments; 

•  Eye movement duration data derived from 

the frontal EEG and averaged over 20 s 

segments. 

 

The total number of observations with valid non-

zero values of all covariates for 115 episodes of 

transition to drowsiness was 1029. 

 

If correlation between observations is ignored the 

binary logistic model for the log odds of drowsiness 

and a combination of N covariates can be formulated in 

a general form [20] as  
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              (1) 

where 

• iY  - binary state of drowsiness for the i
th  

observation; 

• kiCOVAR - value of the kth  covariate for  the 

ith  observation; 

• kββ ,0 - regression coefficients to be 

estimated with the coefficient kβ  

representing the effect of the kth  covariate. 

 

The graphical example of fitting the model (1) 

for the case of central EEG derivation C4 as a single 

covariate is presented in Figure 1. To generate this 

graph all 1029 observations were put into one of 100 

bins based on the respective nearest integer to the value 

of the C4 alpha percentage. For every bin the observed 

proportion of observations with significant drowsiness 

was calculated. Then the univariate binary logistic 

regression model was fitted and the predicted 

proportions of drowsiness were generated for every 

bin. It is evident that binary logistic model is an 

adequate method for description of association 

between increase of the alpha percentage and odds of 

drowsiness. 

The set of covariates in (1) was expanded to 

include the observations of respective physiological 

parameters at the preceding 20 s segments (denoted 

with index previous) as well observations referenced to 

the value in the start of a respective transition episode 

(trajectory) segments (denoted with the additional 

index ref). The observations of covariates at the given 

20 s segment was denoted by the index recent. Finally 

the observations for the preceding 20 s second segment 

referenced to the start of the trajectory will be denoted 

with the index previous_ref. The preceding segments 

were included in the regression model to investigate 

the predictive capabilities of different physiological 

indicators while referencing to the start of a trajectory 

is important for the covariates that have no 
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physiological interpretation for their absolute values 

(like seat movement magnitude).  

 

Figure 1. Fitting binary logistic regression model for 

association between alpha band percentage for the 

central EEG derivation and odds of drowsiness 

 

Correlation between observations can be taken 

into account by means of fitting the random-effects 

non-linear mixed model [8, 23] 

 

              (2) 

where 

• ijY  - binary state of drowsiness for the jth  

observation of the ith  cluster (eg. trajectory); 

• kijCOVAR - value of the kth  covariate for the 

jth  observation of the ith  cluster; 

• ib  - zero-mean normal error component for 

the ith cluster. 

The models were ranked by means of 

comparing their log-likelihood statistics and deviances 

and the objective was to obtain the parsimonious 

(simplest statistically significant) models for the given 

combinations of physiological indicators. The 

diagnostic capabilities of the fitted combinations of 

covariates were indicatively compared by means of 

estimating the areas under the respective Relative 

Operating Characteristic (ROC) curves. 

 The analysis started with the EEG alpha 

percentage that is known to be an important contributor 

into EEG based drowsiness rating [9,11,12,17]. Then 

diagnostic capabilities of other variables and 

combinations of variables were investigated with 

performance of the EEG based measure used as a 

benchmark. 

 

II. RESULTS 

 

A. EEG 

 

The parsimonious models with multiple EEG 

parameters are presented in Table 1. For different 

correlation assumption different combination of four 

EEG parameters were found to maximize the log-

likelihood. In all cases the estimated values of all 

regression coefficients were positive as expected. It 

appears that combination of central and occipital EEG 

derivations as well as adding the observation for 

preceding time interval improved fit of the respective 

regression models. The final log-likelihood of –399.42, 

-382.74 and –370.74 will be used as respective 

benchmark values in the course of the further analyses 

involving other physiological variables. Finally the 

typical ROC for the combination of EEG covariates 

estimated for the random-effects model (2) and within-

transition correlation is displayed in Figure 2. 

 

B. Piezofilm seat movement sensors 

 

The results of fitting models (2,3) for 

combinations of all seat sensor observations and the 

parsimonious combination of these sensors are 

presented in the Tables 2 and 3 respectively. Even 

when all seat movement sensor signals are combined 

the log-likelihood is considerably lower than for EEG. 

The high level of correlation and subsequent 

redundancy between the seat movement sensors is 

highlighted by the fact that the parsimonious models 

only require 3 or even 2 (when correlation between 

observation is taken into account) parameters. The 

negative signs of all regression coefficients in the 

parsimonious models confirm the fundamental 

assumption that reduction in the seat movement 

magnitude is associated with transition to drowsiness. 

For the parsimonious models there is a massive 

difference of 76.76 in the values of log-likelihood 

between the seat movement and EEG models (for the 

case within-transition episode correlation). Finally the 

ROC curve for one of the parsimonious models for seat 

movements is presented in Figure 3. 

 

 

C. Combination of EEG and seat movement magnitude 

 

The parsimonious models for the combination 

of EEG and seat movement magnitude are presented in 

Table 4. It is evident that replacing one of the EEG 

covariates with a seat movement signal significantly 
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increases the log-likelihood. The ROC curve for one of 

the parsimonious models for a combination of EEG 

and seat movements’ magnitude is presented in Figure 

4. 
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Figure 2. ROC curve for the parsimonious model 

with the central and occipital EEG sensor signals as 

parameters 
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Figure 3. ROC curve for the parsimonious model 

with the seat movement sensor signals as 

parameters 
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Figure 4. ROC curve for the parsimonious model 

with EEG alpha percentage and seat movement 

data as parameters 

 

 

 

 

 

 

III. DISCUSSION 

 

The most important findings of the conducted 

analysis of associations between probability of 

drowsiness and selected physiological indicators of 

drowsiness over the course of episodes of transition to 

drowsiness are: 

• Statistically significant associations were 

established for the analysed physiological 

indicators – EEG alpha band power 

percentage and seat movement magnitude. 

Directions of all associations were 

physiologically plausible with increase in 

probability of drowsiness associated with 

increases in the EEG alpha band power 

percentage and reduction in the seat 

movement magnitude; 

• The “gold standard” EEG alpha percentage 

demonstrated the most significant association 

with the probability of drowsiness and model 

with the seat movement magnitude has the 

poorest fit.  

• Adding a non-invasive measure that is seat 

movement magnitude to any parsimonious 

combination of the EEG derived physiological 

predictors always resulted in statistically 

significant improvement of associations; 

• The diagnostic accuracy as measured by the 

area under ROC curve was relatively poor (for 

an effective practical use of the fitted models) 

for all combinations of analysed parameters 

implying the need for more sophisticated 

derivations of the measured signals. This 

observation was not unexpected as the signal 

processing methods used in the analysis were 

relatively simplistic. The combinations of 

EEG alpha percentage and seat movement 

magnitude were found to have largest values 

of the area under the ROC curve. 

 

This article presented the statistical 

methodology for analysis of associations between the 

driver drowsiness and accompanying physiological 

indicators. The main conclusions are that the non-

invasive measures of body movement recorded with 

piezofilm sensors located inside the car seat 

demonstrated statistically significant association with 

the state significant drowsiness and also improved 

associations with drowsiness when used in 

combination with other physiological measures namely 

EEG alpha percentage.  
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Table 1. Parsimonious binary logistic regression models for central and occipital EEG derivations as 

covariates and log odds of drowsiness outcome with different correlation assumptions 

 
Correlation model Covariate 1 Covariate 2 Covariate 3 Covariate 4 

Covariate C4_recent C4_previous_ref O2_recent_ref O2_previous 

Regression 

coeff. 

3.67 

[1.87;  5.47] 

1.84 

[0.27;  3.38] 

3.77 

[2.09; 5.45] 

3.57 

[2.07; 5.07] 

z 4.00 2.34 4.40 4.67 

p-value <0.001 0.019 <0.001 <0.001 

Log-likelihood -399.72 

Independent 

observations 

 

A-ROC 0.765 [0.726; 0.804] 

Covariate C4_recent_ref C4_previous O2_recent_ref O2_previous 

Regression 

coeff. 

5.26 

[2.72;  7.79] 

3.96 

[1.39; 6.53] 

5.12 

[2.69; 7.55] 

5.14 

[2.68; 7.60] 

z 4.06 3.01 4.13 4.09 

p-value <0.001 0.003 <0.001 <0.001 

Log-likelihood -382.74 

Within same 

transition 

episode 

(random effects) 

A-ROC 0.770 [0.0.731; 0.808] 

Covariate C4_recent C4_previous O2_recent_ref O2_previous 

Regression 

coeff. 

7.14 

[4.67; 9.61] 

4.29 

[1.72; 6.86] 

4.64 

[2.71; 6.56] 

4.98 

[2.88; 7.08] 

z 5.67 3.27 4.71 4.64 

p-value <0.001 0.001 <0.001 <0.001 

Log-likelihood -370.34 

Between all 

observations for 

subject 

(random effects) 

A-ROC 0.756 [0.715; 0.796] 

 

Key: C4- central site, O2- occipital site, A-ROC is the area under Relative Operating Characteristic (ROC) curve, p-

value= significance level, Z is the ratio of estimate to its standard deviation. 

 

Table 2. Multivariate binary logistic regression for different combinations of seat movement sensor as 

covariates and log odds of drowsiness outcome with different correlation assumptions 

 
Correlation model preceding values for all sensors 

(10 parameters) 

Latest and preceding values 

for all sensors 

(20 parameters) 

Log-likelihood -461.129 -452.026 Independent 

Observations A-ROC 0.673 [0.632; 0.713] 0.682 [0.642; 0.721] 

Log-likelihood -454.907 -443.599 Within same 

transition episode 

(random effects 
A-ROC -0.668 [0.627; 0.708] 0.677 [0.639; 0.716] 

Log-likelihood -454.877 -445.583 Between all 

observations for 

subject 

(random effects 

A-ROC 0.671 [0.630; 0.712] 0.682 [0.643; 0.721] 

 

Key: A-ROC is the area under Relative Operating Characteristic (ROC) curve 

80 African Journal of Information and Communication Technology, Vol. 5, No. 2, June 2009

1449-2679/$00 - (C) 2009 AJICT. All rights reserved.



Table 3. Parsimonious binary logistic regression models for movement sensor as covariates and log odds of 

drowsiness outcome with different correlation assumptions 
Correlation model Covariate 1 Covariate 2 Covariate 3 

Covariate Seat1_previous_ref Seat1_recent_ref Seat5_recent_ref 
Regression 

 coeff. 

-46.36 [-73.36; -

19.37] 

-27.55 [-52.66; -2.45] -70.46 [-120.26; -20.65] 

z -3.37 -2.15 -2.77 
p-value 0.001 0.031 0.006 

Log-likelihood -466.22 

Independent 

observations 

 

A-ROC 0.682 [0.644; 0.720] 
Covariate Seat1_recent_ref Seat4_previous_ref  
Regression 

 coeff. 

-57.12 [-83.55;  -

30.70] 

-46.24 [-66.61; -25.87] - 

z -4.24 -4.45 - 
p-value <0.001 <0.001 - 

Log-likelihood -459.02 

Within same 

transition episode 

(random effects) 

A-ROC 0.681 [0.643; 0.719] 

Covariate Seat1_recent_ref Seat4_previous_ref  
Regression 

 coeff. 

-48.30 [-69.80;  -

26.80] 

-40.51 [-58.58; -22.44] - 

z -4.40 -4.39 - 
p-value <0.001 <0.001 - 

Log-likelihood -460.48 

Between all 

observations for 

subject 

(random effects) 

A-ROC 0.681 [0.644; 0.719] 

Key: A-ROC is the area under Relative Operating Characteristic (ROC) curve, p-value= significance level, z is the 

ratio of estimate to its standard deviation. 

 

Table 4. Parsimonious binary logistic regression models for combination EEG alpha band percentages and 

movement sensor signals as covariates and log odds of drowsiness outcome  
Correlation model 

 

Covariate 1 Covariate 2 Covariate 3 Covariate 4 

Covariate C4_recent O2_recent_ref O2_previous Seat1_previous_ref 

Regression 

coeff. 

3.96 

[2.12; 5.79] 

4.54 

[2.92; 6.16] 

3.71 

[2.25; 5.18] 

-71.23 

[-96.45 –46.00] 

z 4.23 5.50 -3.44 -4.40 

p-value <0.001 <0.001 0.001 <0.001 

Log-likelihood -385.69 

Independent 

observations 

 

A-ROC 0.793 [0.757; 0.829] 

Covariate C4_recent O2_recent_ref O2_previous Seat1_previous_ref 

Regression 

coeff. 

6.03 

[3.54;  8.52] 

5.50 

[3.27; 7.73] 

5.46 

[3.31; 7.62] 

-77.96 

[-110.91; -45.02] 

z 4.75 4.83 4.97 -4.64 

p-value <0.001 <0.001 <0.001 <0.001 

Log-likelihood -374.42 

Within same 

trans. episode 

(random effects) 

A-ROC 0.790 [0.753; 0.827] 

Covariate C4_recent O2_recent_ref O2_previous Seat1_previous_ref 

Regression 

coeff. 

6.37 

[5.80;  10.97] 

4.44 

[2.48; 6.39] 

6.23 

[4.38; 8.08] 

-71.20 

[-99.00; -43.41] 

z 6.37 4.45 6.60 -5.02 

p-value <0.001 <0.001 <0.001 <0.001 

Log-likelihood -361.59 

Between all 

observations for 

subject 

(random effects) 

A-ROC 0.784 [0.746; 0.821] 

Key: C4- central site, O2- occipital site, A-ROC is the area under Relative Operating Characteristic (ROC) curve, p-

value= significance level, Z is the ratio of estimate to its standard deviation. 
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To achieve the practically acceptable level of 

accuracy of drowsiness detection the detection system 

could be improved in a number of ways. 

 

• Sensitivity and reliability of measurement of 

body movement magnitude and spatial 

patterns should be improved. There are 

potential benefits in integrating additional 

sensors at the steering wheel and seat belt; 

• Sophisticated signal analysis algorithms 

should be implemented particularly to deal 

with the noise and signal artefacts; 

• Presented statistical analysis should cover the 

complete recorded data set and not only 

episodes of transition to significant 

drowsiness as conducted at this stage. It is 

also important to expand the statistical models 

to the case of multiple categories of 

drowsiness from the binary model. 

 

However in spite of these deficiencies the 

authors believe that the presented statistical analysis 

methodology is the useful starting point that has 

established associations between drowsiness and non-

invasive measures (mainly magnitude of the seat 

movements) as well as determined the relative effects 

of various detection techniques and demonstrated 

benefits of the hybrid approach. With potential 

improvements in recording accuracy and signal 

analysis sophistication the described statistical method 

could still be used to estimate model fit and diagnostic 

accuracy of more advanced implementations. 
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