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Abstract: We introduce an approach for modelling the structural deterioration of components of bridges for maintenance optimization 
purposes. The Markov chain model is found in the maintenance and repair problems since the early 60's, is introduced to the 
maintenance of road infrastructure in the 1980's, and is made to drive the current bridge maintenance optimization systems. While this 
model results into solvable programming problems and provides a solution, there are a number of criticisms associated with it. We 
highlight the shortfalls of the Markov model for bridge lifetime assessment and promote the use of stochastic processes.

1 INTRODUCTION 

Bridge maintenance optimization was applied during past 
decades due to the large costs associated with the
management of networks of ageing structures. In the 
United States, more than 70% of the bridges were built 
prior to 1935, and a large percentage of the United 
Kingdom's current bridge stock was built between the late 
1950s and early 1970s. In the state of New South Wales, 
Australia, around 70% of the operating bridges were built 
before 1985, with a significant proportion before the 
1940's. With the near completion of most of the road 
networks and the ageing of bridges, the emphasis shifted 
to the maintenance and rehabilitation of the existing 
infrastructure. A concerted effort was made in the 1970's 
after the collapse of several bridges in the United States 
in the late 60's [1]. A number of mandates by 
governments introduced standards and computerized 
maintenance optimization approaches. These software 
tools, known as Bridge Management Systems (BMS), 
consist of formal procedures and methods for gathering 
and analyzing bridge condition data. The purpose of a 
BMS is to predict conditions for bridge stocks and 
estimate maintenance funding. Pontis [2], one of the most 
widely used systems, was designed and developed at the 
request of the US Federal Highway Administration. A 
similar BMS is the BRIDGIT bridge management system 
[3]. A bridge in a BMS is represented by structural 
elements defined as a set of common bridge 
components. For each bridge, the conditions of these 
elements are assessed visually during periodic 
inspections, and reported into the BMS. The condition 
data at each inspection consist of the total quantity of the 
element divided through a number of condition states; 
from the ‘as good as new’ condition to the most severe 
state of deterioration. This is a common practice for 
representing infrastructure condition data, starting with 
the discrete condition rating scale from 0 to 9 adopted by 
the U.S. Federal Highway Administration [4], and 
followed by the Pontis condition rating scale, and that of 
most other bridge inspection procedures. This process 
simplifies the inspections, but more importantly the 
modeling of the element/bridge/network condition and the 
maintenance optimization. The condition assessment and 

prediction is done by the application of a Markov chain 
model. The Markov chain model can be found in the 
maintenance and repair problems since the early 60's [5]. 
It is introduced to the maintenance of road infrastructure 
by Golabi et al. (1982) [6], and is made to drive the Pontis 
bridge management system. In the Markov model, the 
condition of a bridge element takes discrete states and 
the transitions from one state to the other are modelled
with a Markov chain. While this approach has become 
standard, there have been a number of criticisms 
associated with it. In this article, we discuss the 
fundamentals and argue for the applicability of the 
gamma process and other stochastic processes for 
modelling structural deterioration.

2 THE MARKOV CHAIN MODEL

Markov model formulations are appealing to manage 
infrastructure because they provide a framework that 
accounts for the uncertainty and the optimal policies can 
be obtained by solving simple programming problems. A 
number of criticism points have been made against the 
usefulness of the model [1]; (i) bridge element 
performance is not addressed from a reliability viewpoint, 
(ii) the Markovian assumption does not take into account 
the history of the bridge deterioration, and (iii) bridge 
system performance is not generally addressed. Among 
these limitations, a most important one is the inability of 
the Markov model, by assumption, to capture the time 
effect of deterioration. It is clear to many practitioners that 
the deterioration rate tends generally to increase with 
time, and amount of deterioration. This observation 
conflicts with the stationarity assumption of the Markov 
model where the transition probabilities do not change 
with time. In the context of the estimation of the Markov 
model transition probabilities, Madanat et al. (1995) [7] 
make a number of observations. They point to the fact 
that the methods used in estimating these probabilities 
are ad-hoc and suffer from important methodological 
limitations; (i) the change in condition from one inspection 
to the next is not modelled explicitly, failing to capture the 
structure of the deterioration process, (ii) consequently, 
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the model fails to capture the inherent non-stationarity of 
the deterioration process, and (iii) the approach does not 
recognize the latent nature of deterioration. Since 
deterioration is an unobservable process, it is not the 
state of the observable condition that should be 
modelled, but rather the process that generates these 
conditions.

Transition Probabilities

A practical difficulty with the estimation of the transition 
probabilities is the lack of data for some condition states. 
The severe conditions of elements of a bridge are rarely 
observed, due to the maintenance effort. Only the first 
states transition probabilities are estimated properly. Fig. 
1 shows the frequency of units of different elements in 
the possible condition states, when inspected. An 
element on a bridge is measured in a number of units, 

either in square meters ( 2m ) if it is a surface, in meters 
(m) for some elements such as railing and joints, or units 
(ea) for timber elements. The examples of Fig. 1 are 
taken from a network of bridges in the study we mention 
in the next section. They show that most of the element 
units are in state 2 when they are not in the ‘as good as 
new’ or ‘full condition’ state 1. While it depends on the 
element and on the budget, many elements are brought 
back to the full condition state from state 2. This implies 
that little data are available about transitions to more 
severe conditions. Pontis supplements the data with 
expert knowledge at the beginning of system 
implementation due to the scarcity of data at that stage. 
As more data become available, the probabilities are to 
be updated using a Bayesian method. This is a major 
shortfall, as many managers are reticent about the use of 
subjective assessment, particularly if there is little chance 
that enough data will appear to adjust the subjective 
input.

a) b)

Fig. 1 Condition frequency for a) Example 1, b) Example 2

Stationarity Assumption

The theoretical weakness of the Markov model is the 
assumption of stationarity. The model assumes that the 
time of transition from one state to another is distributed 
exponentially. This assumption allows the application of 
the Markov model by which an old unit of element and a 
newer one are equally likely to move to the next condition 
[2]. This is a rigid structure imposed on the deterioration 

model. This weakness is acknowledged in most studies, 
and yet the Markov model has been adopted from the 
beginning and remains in most bridge management 
systems. It provides a solution for the estimation of future 
conditions and prescribes how to invest maintenance 
funding. A predictive solution relies on the validity of the 
underlying deterioration model. Scherer and Glagola 
(1994) [8], Wirahadikusumah et al. (2001) [9] and 
Morcous (2006) [10], among others have studied the 
validity of the state independence assumption of the 
Markov model. This assumption assumes that the future 
condition of a bridge element depends only on its present 
condition and not on its past condition, implying that 
bridge deterioration is a stationary process. While the 
simplifying assumption holds in some studies, it is not 
substantiated with a lot of evidence, the available 
condition data not providing adequate information about 
all possible condition transitions.

3 THE RTA LEVEL-2 INSPECTION DATA

A study is conducted for the Roads and Traffic Authority 
of the state of New South Wales. The goal in the case 
study is to develop deterioration models for the 
assessment of future conditions of 
elements/bridges/networks of bridges. The data provided 
consist of inspection records conducted periodically on all 
bridges in the state. The inspections are visual for most 
elements and the condition states are discrete. An 
element consists of a number of quantity units. Each unit 
is judged to be in one of n states, n=3, 4 or 5, depending 
on the element type. Condition state 1 represents the ‘as 
good as new’ condition, no-deterioration state, while 
condition states 2,…, n mark increasing levels of 
deterioration. There are 4,945 structures and 66 
elements considered in the study, for which over 230,000 
inspection records exist. The records go back 15 years, 
and are up to the present time. Among the recorded 

entries is q , the total quantity of the element, 1q  the 

quantity in condition state 1 on the day of that inspection 

for that particular element, 2q  the quantity in state 2, to 

nq  the quantity in condition state n. The inspected 

quantities for each element are measured either in 

square meters ( 2m ) if it is a surface, in meters (m) for 
some elements such as railing and joints, or units (ea) for 
timber elements. The structures have on average about 
10 elements, with more than 30 in some cases. Each 
element was inspected approximately every two years. 
The elements are concrete elements, steel elements with 
lead based paint, steel elements with other protective 
treatment, timber elements, joints, bearings, railings and 
others. Some of the more common types are concrete 
pre-tensioned girder, concrete reinforced pre-stressed 
pile, concrete deck slab, concrete culverts, steel rolled 
beams / I girders with lead based paint protective coating, 
timber beam / cross girder, pourable / cork joint seal, 
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elastomeric bearing, metal bridge railing and masonry / 
brick / reinforced earth.

Condition Index

Deterioration in elements of bridges is best measured as 
a continuous variable representing for example the
percentage of degradation. Given the large surfaces and 
number of items to be inspected, it is hard to measure 
visually percentages. The condition data at each 
inspection therefore consists of the total quantity q of the 
element being divided through judgment into n states.


n

=i
iq=q

1

is satisfied in all inspection records. The 

percentage of undamaged quantity is qq /1 × 100%. The 

corresponding proportion of deteriorated element is 

qq=q
n

=i
id /

2
 , qq=qd /1 1 . If one was to ignore the 

degree of deterioration and consider only the proportion 

of damaged quantity, then C qq /1 × 100 provides a 

first level of information on the condition of the element. 

In our study, the condition data 1q … nq  of an element 

is converted to an univariate measure C , using the 
notion of ‘Condition Index’. A number of condition indices 
were formulated. These indices can be related to the 
California bridge health index [11], a ranking system that 
takes values in [0,100]. The California Department of 
Transportation was involved in the development and 
implementation of Pontis. A condition index has two 
functions; (i) its use in a cost / benefit analysis where the 
condition history of a structure can be estimated  with the 
inspection data of its elements, through the use of a 
weighted sum of the conditions of the elements, and (ii) 
its use in the study of deterioration by modelling the 
univariate measure in time.

4 THE DETERIORATION RATE

In turning the vector of quantities 1q … nq  into a single 

value (t)Celem  where t  is time, the dimensionality of the 

problem is reduced and one can apply mathematically 
tractable models. This univariate quantity can be studied 
over time using a stochastic process. The element 
condition is a value between 0 and 100%, 100% being 
the ‘as good as new’ condition (no deterioration) state. An 
element can be in one of 11 states at an inspection time. 
The 11 states are mutually exclusive and exhaustive 
events, defined using two consecutive element 

conditions. Some of these states are ( 1S ): the element 

condition C  is 100% and 100% at the previous 

inspection, ( 2S ): the element condition C  is less than 

100%, but positive,  while 100% at the previous 

inspection, ( 3S ): the element condition C  is 0% while 

100% at the previous inspection, ( 7S ): the element 

condition C  is less than 100%, but positive,  and less 
than at the previous inspection where it was less than 

100%, but positive, and ( 8S ): the element condition C  is 

0%, while it was less than 100%, but positive at the 
previous inspection. These states are of relevance when 
analyzing the deterioration. The other states are due to 
maintenance, when a renovation or repair improves the 
condition of the element or brings it back to ‘as good as 
new’.

Deterioration Measure

The deterioration is defined as a function of the condition,

C=Z 100 , [ (t)CC elem ]. 732 Z,Z,Z,Z1 and 8Z  are 

the deterioration quantities corresponding to the states 

732 S,S,S,S1 and 8S . These variables are of relevance 

when studying the deterioration process, along with their 
inter-inspection times. The time at which a deterioration 

increase, dZ in a time interval dt , occurs is important. 

The pairs dZ)(dt, , for 0>dZ , and the time at which dt
starts are information used to estimate deterioration.

Time Pattern

In order to study the distribution of the deterioration 

random variables 2Z  and 7dZ  (the increase associated 

with 7Z ), we need data that occur at the same time. In 

practice, inspections are not always strictly periodic. 
However, the inter-inspection times can be adjusted so 
that they are grouped together, making it possible to 
study the probabilistic behavior of deterioration as a 
random variable at different times. The adjustment was 
made through rounding off the inspection times. The 
pattern showed that the inspection times were meant to 
be 2 years apart. Figure 2 shows the conditions 

2100 Z=C   plotted in dots, of some concrete element 

type chosen as an example, as they occur in time from a 
renewal, on the structures the element belongs to. The 
stars are the adjusted conditions.
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Fig. 2 Condition data of a concrete element type

Judgment was used in eliminating data for inspection 
time intervals that exceed 4 years. Beyond 4 years, the 
data start thinning. In the case of this element, from the 

original 913 conditions, 2100 Z=C  , 836 data points 

adjusted in time are plotted in Fig. 3. Next, we used a 
least squares approach in fitting the data to a nonlinear

deterioration curve qμt100 , with parameters μ and 

q . Fig. 3 displays the least squares results using (i) the 

condition means at times 1,2,3 and 4 years, (ii) all the 

adjusted data, and (iii) the actual data. q  was found to 

be 2.7, 2.4 and 2.4, respectively, and μ =0.29, 0.404, 

0.408, showing that the adjustment to the data was 
minimal. The time pattern of the deterioration of the 
element fits the behaviour of a stochastic process with 

mean function qμt . 

Fig. 3 Condition of a concrete element

Probability Distribution Fit

The distributions of 2Z at different points in time 

characterize the stochastic process. In the case of most 

of our elements, the probability distribution showed a 
good fit to the gamma distribution (Fig. 4). This agrees 
with the properties of the gamma deterioration process, 
where the distributions of incremental deteriorations are 
gamma distributed [12]. This was observed for the 
concrete and steel elements, as well as railing and joints 
and some timber elements. The lognormal distribution 
was also found to be a good fit (Fig. 5).

Fig. 4 Gamma and Lognormal probability distribution fits

a)
               

                         b)

Fig. 5 Lognormal fit for a) Concrete, b) Steel element

In the gamma process, not only is the distribution a 
gamma distribution when measured from the start of 
time, but any incremental distribution is also a gamma 
distribution. That is, if taking an interval in time and 
measuring the difference, increase, in the quantity of 
interest, the distribution of such an increase is also a 
gamma distribution. In addition, the increases in non-
overlapping time intervals are independent. This makes 
for a number of assumptions to be checked.  Fig. 6 
shows the distribution fit to the gamma and lognormal 
probability distributions for the increase in deterioration 

7dZ , in a time interval 2dt years, when recorded at 

dtt   years after a renewal. The plots in Fig 6 are for 

11,...,2,1,0t  left to right, top to bottom.
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Fig. 6 Probability plots for deterioration increase

This example is taken for a concrete element common on 

a number of structures so that the data on 7dZ  allow a 

conclusive distributional fit. The good fit was also 
observed within classes of structures, following 
stratification of the data. We observed that whenever 

7dZ data are abundant enough, the stochastic process 

assumptions can be accepted. The data of the case 

study show the behavior of a stochastic process with 
selected probability distributions.  

Gamma Process Application

For the purpose of building a statistical model, these 
observations promote the use of the gamma process with 

mean deterioration function qμt . This process mean 

function includes the stationarity case for 1=q . The 

gamma process is defined by van Noortwijk (2009) [12] in 
the context of the deterioration of structures. To illustrate 
the estimation procedure, we apply it to a concrete 
element and observe a rate 3.3ˆ q  (Fig. 7).

Fig. 7 Gamma process estimation

Two data points are used; (15.81, 99.69) and (17.75, 
95.46) with the renewal at year 13.92 since the start of 
the database. This example was chosen for illustrative 
purposes. In many cases, the bridge elements showed 
lower rates.

5 THE GAMMA PROCESS 

The gamma process can capture the temporal variability 
of degradation. The argument is made in a series of 
papers by Pandey and van Noortwijk (2004) [13], van 
Noortwijk et al. (2005) [14] and Pandey et al. (2007) [15]. 
The gamma process can be found in its modern 
application to structures in the late 90’s by van Noortwijk 
(1998) [16] and van Noortwijk and Klatter (1999) [17]. 
The idea of the use of a gamma process can be found 
earlier in the Netherlands where generalized gamma 
processes were used to model decision problems for 
optimizing maintenance of the sea-bed protection of the 
Eastern-Scheldt barrier, berm breakwaters, and dykes 
[18]. Empirical studies showed that the expected 

deterioration in some cases followed the power law bat , 

where t  is the time. This function of time is incorporated 
into the gamma process and used to model structural 
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deterioration. The advantage of the gamma process is 
recognized and applied in many structural studies [19]-
[21]. van Noortwijk (2009) [12] provides a comprehensive 
overview of the use of the gamma process in the 
maintenance of structures. 

Definition 

In the context of structural deterioration, the gamma 

process is defined as follows: Let v(t)  be a non-

decreasing, right continuous, real-valued function for 

0>t , with 00 =)v( . The gamma process with shape 

function 0>v(t)  and scale parameter 0>u  is a 

continuous-time stochastic process Z(t) , 0>t  with the 

following properties; 

00 =)Z( with probability 1, 

u)v(t),)G(v(Z(t)Z(τ  ~) and 

Z(t) has independent increments, 

where Γ(v)ezu=v,u)|G(z uzvv /1   is the gamma 

probability density function defined for 0>z .  The 

process can be parameterized. Letting 2/ σtμ=v(t) q2

and 2/ σμ=u , the mean and variance of the 

deterioration Z(t) are:

qμt=E(Z(t))     (1)
q2tσ=V(Z(t))   (2) 

Given a set of observations of the deterioration process 

Z(t) ,  n

=iiz 1 for times  n

=iit 1 , the maximization of the 

likelihood function provides estimates of the three 

parameters ( qσ,μ, ). This involves the search, q fixed, 

for the zero of a function, where σ̂ is solution of











n

=i
q
n

nq
niii )

σt

z
(t=δ)w

σ

μ
(w

1
22

2

loglog
ˆ

      (3)

where 1 iii zz=δ and q
i

q
ii tt=w 1 , n,=i 1,... , 

00 =z with 00 =t , and q
nn tz=μ /ˆ . ψ   is the Digamma 

function.

Simulation and Estimation

We experimented with the process using simulation and 
estimating the parameters with the maximum likelihood 
approach. With few data points, the model captures the 
deterioration process efficiently. The lower the data 
points are along the curve, the better the estimation. To 
illustrate, we assume that three data points are observed; 

=)c,(y 11 (2, 99.5), =)c,(y 22 (4, 99.4) and =)c,(y 33 (6, 

95.2). This means that some years after the start of the 
database, at a renewal point, the element deterioration is 

00 =z , time is reset to 00 =t  and the condition 0C  is 

set to 100(%). At the next inspection, 2 years later, 

)c,(y 11 is recorded leading to =)z,(t 11 (2,100- 1c ) = (2, 

0.5). Similarly, )z,(t 22  and )z,(t 33  are obtained. The 

first deterioration is of 0.5% magnitude, then 0.1%. Then 
a further 4.2% of the element deteriorates. Varying the 

deterioration rate of the process, 51,...,=q , μ and σ  are 

estimated using the maximum likelihood method for each 

q  value. The resulting process mean functions,
qtμ̂100  , for corresponding q , are plotted in Fig. 8. μ̂

is the maximum likelihood estimate of μ  for given q . 

Applying the maximum likelihood principle again, the 

deterioration rate is estimated to be 2ˆ =q , for 

corresponding =μ̂ 0.1333 and =σ̂ 0.4875. The 

estimated condition process mean function qtμ ˆˆ100  is 

shown as a dotted line in Fig. 8.

Fig.  8   Maximum likelihood estimation

Using the estimated parameters )ˆ,ˆ,ˆ( qμ  , a condition 

path is simulated for illustrative purposes and shown in 
Fig. 9. 
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Fig. 9 Simulated condition path

Replicating 50 times, the condition data are shown in Fig. 
10. The data points are not connected with lines, to better 
illustrate the behaviour of the stochastic process at a 
fixed point in time. For a given point in time, the 
corresponding data are gamma distributed.

.

Fig. 10 Simulated condition paths for 50 replications

Fig. 11 shows the theoretical mean deterioration process 
of a gamma process, along with the ensuing condition 
mean process. The theoretical distributions of the 

accumulated deterioration ( 7Z ) and the increase 

deterioration ( 7dZ ) are schematized.

Fig.  11 Theoretical mean deterioration and condition

Accuracy of the Estimation Procedure

In experimenting with the gamma process, we observe 
that with few data points the model captures the 
deterioration process efficiently. The lower the data 
points are along the curve, the better the estimation. This 
is a significant observation. The high deterioration points 
for an element of a bridge are not many and the few that 
are observed do not provide good estimates for the 
Markov transitions to high deterioration states. However, 
few of these data points provide a good estimation when 
using a gamma process model. To illustrate this point, we 
choose to simulate 50 condition paths using the same 
estimated parameters, whose theoretical process mean 
is shown by the dashed line in Fig. 12. For each 
simulated path, three data points are taken, using the 

times =t1 1.6875, =t2 5.0625 and =t3 10.9688. For 

each path, the data may differ, and are plotted as small 
squares in the figure. The resulting MLE estimated 
condition process means are shown in Fig. 12. Their 
average is plotted as a line with small circles. 

Fig.  12   Averaged estimated process means
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It is clear that the estimation is more efficient at the top of 
the curve where the data lie. This can be verified 

theoretically for a fixed q, since the estimate of μ̂

depends on the last data point )z,(t nn . However, in 

estimating the triplet σ)μ,(q, , a closed form solution is 

not available. We observe empirically that the lower the 
condition data is on the curve, that is the higher the 
observed deterioration, the better the estimation of the 

condition (deterioration) process. Keeping =t1 1.6875 

and =t2 5.0625 but varying 3t , we observe the average 

estimated process mean performs better as the third data 
point goes deeper in time, and hence in deterioration 

(see Fig. 13). At 3t =22.78, the deterioration is 69.2%, for 

a corresponding condition of 30.8%. This leads, on 
average, to a perfect estimation of the process mean 
curve. This point is further illustrated in Fig. 14 where we 

choose 3t =24.4688, for a corresponding 80% theoretical 

deterioration. Fig. 14 shows the corresponding statistics 
of the 50 simulation-MLE results.

a)

b)

c)

Fig.  13   Average estimated process mean for a)  t3=6.75, 
b)  t3=10.96, c)  t3=22.78

a)

b)

Fig.  14   Average estimated process mean with deep 
information a) Averaged MLE mean process, b) MLE 

statistics ( x = Parameter value)

For an element whose deterioration behaves in time 
according to a gamma process, any information on the 
condition path leads to a better estimation. But the 
deeper that information is along the curve, the higher the 
observed deterioration, the better the theoretical process 
mean is estimated. The importance of such estimation is 
apparent in the execution of the final exercise, the 
maintenance optimization. In estimating at what time the 
condition of an element will reach a target level, and the 
ensuing economic consequences of corresponding 
maintenance times, the accuracy is of significant 
importance. It is illustrated in Fig. 15, where two different 

condition paths lead to two very different times, *
1t and *

2t , 

to reach the 20% deterioration target. There is 
approximately a 2 years difference between the two 
maintenance times, which can be of significant difference 
in terms of cost if applied to a large number of elements 
on different bridges or to expensive elements.
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Fig.  15   Time to reach target level

Aggregating Data

The exercise of estimating the process mean curve is at 
the heart of the maintenance optimization problem. While 
the decision model requires the declaration of costs, a 
non trivial part, estimating properly the condition curve is 
the essential part of the problem. The data for each 
individual bridge aren't enough to estimate the 

parameters σμ,  and q  properly. Often, the path  n

=iiz 1

for times  n

=iit 1 does not extend beyond n=1 or 2, before 

the element is brought back to the full condition state 

0=Z . One way around this problem is to aggregate the 
data by dividing the bridges into similarity classes. 
Bridges are grouped through the identification of major 
elements. Then within the classes of similar bridges, a 
second stratification occurs according to influencing 
factors; traffic load, age, region and environmental stress. 
The estimation of the parameters within the class 
structures results in an effective deterioration assessment 
and prediction. The approach of aggregating data is the 
one taken in most scenarios. Regardless of the statistical 
model, be it the Markov chain or a stochastic process 
such as the gamma process, one is often forced to pull 
information about an element type from different bridges 
and estimate and predict the deterioration. But in the 
gamma process, the approach provides a more efficient 
estimation procedure. While few data points for high 
deterioration provide at best weak estimates for the 
transition probabilities to the corresponding states in the 
Markov model, in the gamma process, they help pin 
down the deterioration curve more accurately, as seen in 
the simulation analysis.

First Observation Data

In the special case where only the first deteriorations, 
observed at the first inspection after a renewal, are 

available, the solution is similar to the one for a single 

path seen above, but the search for σ̂ , for fixed q , 

involves the equation

 










m

=i

m

i
iiii )

σ
(w=δ)w

σ

μ
(w

1
2

1
2

2 ˆ
log)(log

ˆ       (4)

where iz is the deterioration of the thi element in the 

class of structures, ii z=δ and q
ii t=w , m,=i 1,...  and 

q
i

m

=i
i

m

=i

tz=μ 
11

/ˆ . In general, due to the independent 

increments property and with the assumption of 
independence between elements on different structures, 
the likelihood function can be written and maximized to 

estimate the parameters σμ,  and q  [21].

6 LOGNORMAL DIFFUSION PROCESS 

Another candidate for the modelling of the deterioration is 
the lognormal diffusion process. Used in statistical 
modelling, it has been mainly confined to the analysis of 
economic data [22]. The lognormal diffusion process with 
exogenous factors is defined by the process 

)({ tX , T],(tt 0 , }0 t  with positive values and 

infinitesimal moments:

xh(t)=t)(x,A1     (5)
2

2 xσ=(x,t)A 2     (6)

where 
q

j=
jj0 (t)Fβ+β=h(t)

1

, jβ , 0>σ  and jF

are time-continuous functions in T],(t0 q,=j 1,... . The 

transition probability density function of this process is a 
lognormal distribution and the trend is given by the 
expression,

))((
0

0 
t

t

dh))expE(X(t=E(X(t))     (7)

The estimation of the parameters σ),β,,(β q...0  is 

conducted through the maximization of likelihood as for 

the Gamma process. Replacing the process mean qμt of 

the gamma process with a trend 1
qλte  in the 

lognormal diffusion process can capture the deterioration 
process.  
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7 CONCLUSION

Structural deterioration assessment and condition 
prediction of bridges is a subject of interest that has far 
reaching consequences, both in terms of public safety 
and budgeting. This article discusses the theoretical 
foundations of the model most used for assessing 
structural deterioration in bridge elements. A modern 
view is proposed using the gamma process that has 
proved successful in structural deterioration assessment. 
Experimentation with the process is shown using 
simulation and estimation of the parameters of the model. 
With few data points, the model captures the 
deterioration process efficiently. In the case study, a 
probability distribution fit is observed that supports the 
use of the gamma process as well as leads to the 
consideration of other stochastic deterioration processes.
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