Narrowband Interference Suppression in Wireless OFDM Systems
Main Article Content
Abstract
Signal distortions in communication systems
occur between the transmitter and the receiver; these
distortions normally cause bit errors at the receiver. In
addition interference by other signals may add to the
deterioration in performance of the communication link. In
order to achieve reliable communication, the effects of the
communication channel distortion and interfering signals
must be reduced using different techniques. The aim of this
paper is to introduce the fundamentals of Orthogonal
Frequency Division Multiplexing (OFDM) and Orthogonal
Frequency Division Multiple Access (OFDMA), to review
and examine the effects of interference in a digital data
communication link and to explore methods for mitigating
or compensating for these effects.
occur between the transmitter and the receiver; these
distortions normally cause bit errors at the receiver. In
addition interference by other signals may add to the
deterioration in performance of the communication link. In
order to achieve reliable communication, the effects of the
communication channel distortion and interfering signals
must be reduced using different techniques. The aim of this
paper is to introduce the fundamentals of Orthogonal
Frequency Division Multiplexing (OFDM) and Orthogonal
Frequency Division Multiple Access (OFDMA), to review
and examine the effects of interference in a digital data
communication link and to explore methods for mitigating
or compensating for these effects.
Article Details
Issue
Section
Telecommunication Theory and Systems
Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. A Copyright Form should be downloaded by authors and must be faxed to the AJICT before the publication of their manuscripts will be scheduled.