Optical Character Recognition of Amharic Documents
Main Article Content
Abstract
In Africa around 2,500 languages are spoken. Some of these languages have their own indigenous scripts. Accordingly, there is a bulk of printed documents available in libraries, information centers, museums and offices. Digitization of these documents enables to harness already available information technologies to local information needs and developments. This paper presents an Optical Character Recognition (OCR) system for converting digitized documents in local languages. An extensive literature survey reveals that this is the first attempt that report the challenges towards the recognition of indigenous African scripts and a possible solution for Amharic script. Research in the recognition of African indigenous scripts faces major challenges due to (i) the use of large number characters in the writing and (ii) existence of large set of visually similar characters. In this paper, we propose a novel feature extraction scheme using principal component and linear discriminant analysis, followed by a decision directed acyclic graph based support vector machine classifier. Recognition results are presented on real-life degraded documents such as books, magazines and newspapers to demonstrate the performance of the recognizer.
Article Details
Issue
Section
Artificial Intelligence
Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. A Copyright Form should be downloaded by authors and must be faxed to the AJICT before the publication of their manuscripts will be scheduled.