
A MARK-UP APPROACH TO SERVICE
CREATION

Ivaylo Atanasov, e-mail: iia@tu-sofia.bg, phone: +359 2 965 20 50
Evelina Pencheva, e-mail: enp@tu-sofia.bg, phone: +359 2 965 22 54
Technical University of Sofia, 8, “Kliment Ohridsky” blvd, 1000 Sofia, Bulgaria

Abstract – The paper presents a new mark-up
approach to service creation in Next Generation
Networks. The approach allows access to network
functions exposed by open application programming
interfaces. Based on ontology analysis of the
application domain, language constructions are
synthesized and formally defined. Language supporting
tools are developed. The approach functionality is
tested by simulation.

Keywords – NGN service creation, Parlay/OSA
interfaces, mark-up languages.

I. INTRODUCTION

The services and applications in Next Generation
Networks (NGN) are expected to generate new
revenue stream combining voice, video, multimedia,
and data communications, possibly involving mobile
terminals and multiple parties over multiple types of
transport. Provisioning of a common platform for
service and application development opens the
telecommunication networks of the future up to a
wealth of developers and freedom.

An important ingredient of open service platform is
the concept of Application Programming Interfaces
(APIs) that allows third parties to get in on developing
services for telecommunication networks, with
transportable suppliers independent skills [1]. This will
greatly reduce the cost of development and it is hoped
nurture innovation.

The APIs provide application developers with
programmability of resources such as
telecommunication protocol stacks and databases, by
defining these resources in terms of objects and
methods, data types and parameters that operate on
those objects. Providing different levels of functional
abstraction the APIs hide network specificity and
protocol complexity.

Initiatives like Parlay/OSA (Open service access)
[2] and JAIN (Java applications for intelligent
networks) [3] overcome the service portability barrier
by providing a common API framework delivering
convergence though the implementation of multiple
protocol stacks. The JAIN framework allows
implementation of softswitch functionality on any
machine that has Java runtime engine installed. The
third-generation (3G) mobile world has defined OSA
framework which allows third party to be plugged into

mobile networks. Although intended for UMTS
networks, the principles of OSA are applicable in the
NGN domain as well. Both JAIN and the OSA
initiatives have been influenced by Parlay
specifications.

The aim of Parlay/OSA is to provide a network
independent application development environment by
specification of APIs (Fig. 1). The Parlay/OSA APIs
are programming language independent and cover
the following functionalities: call control, data session
control, mobility, user interaction, terminal capabilities,
connectivity management, messaging and charging.
The applications gain access to network functions
though the framework API that covers aspects of
security and management.

While those APIs can be implemented by
programming languages, such as C++ and Java,
eXtensible Markup Language (XML)-based languages
possess many attractive features making them
applicable to NGN service creation [4, 5]. XML and its
derivates found their way into almost every facet of
telecommunications from service provisioning through
billing records and network management systems and
even scripting languages for automated voice
services. XML-based languages are easy to learn,
platform and programming language independent.
XML allows a user to define his or her own tags and
can be easily adapted to specific application domain.

Several XML-based languages have invaded the
telecommunications network and some of them are
intended for service creation: Call processing
language (CPL) [6], Voice extensible markup
language (VoiceXML) [7], Call control extensible
markup language (CCXML) [8], and Service creation
markup language (SCML) [9]. These languages can
be used to create applications combining network
functions mainly for call control and user interaction,
but none of them supports the full set of network
capabilities exposed by Parlay/OSA APIs.

In this paper we present a new XML-derived
approach to NGN service creation. The approach is
based on Parlay/OSA APIs and thus supports the
whole palette of network functions. To illustrate the
approach applicability we have defined a new markup
language called Service Logic Processing Language
(SLPL) and developed language supporting software
tools.

8 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

PSTN

ATM

 IP based backbone

network

IP based backbone

network

 GSM

Access plane

UMTS
WLAN Internet

Transport plane

Control plane

Service plane

Positioning Messaging Charging User status Call control

Application Programming Interfaces

Authentication User interaction
Data session
control

Soft-switches Call agents Service Control Points

Fig. 1 NGN service deployment

These software tools include the following: a
language interpreter that makes lexical and syntactical
analysis of service logic description and interprets
resulting abstract syntax tree; and a translator
generator that processes formally described language
grammar rules and generates source code that
“understands” these rules. To test the approach
functionality we have used a simulation environment
of Ericsson’s Parlay/OSA gateway called Network
Resource Gateway (NRG) simulator.

The NRG simulator [11] is a utility for those
wanting to develop a Parlay/OSA application without
having access to a real NRG or a live telecom
network. We have designed Parlay/OSA enabled
applications described in SLPL. Application logic
scripts are interpreted by the SLPL interpreter and
their functionality is simulated by the use of the NRG
simulator.

First in the paper we point out the principles of
language synthesis, describe the overall structure of
the SLPL application logic script, and present some of
SLPL language constructions. Then we evaluate the
approach according defined criteria. Some aspects of
SLPL supporting software tools are discussed. Last
we give an example of Parlay/OSA application which
functionality is tested by the NRG simulator.

II. LANGUAGE SYNTESIS

The language used to describe NGN services has
to reflect the objects and their relationships in the
application domain under given constraints. Ontology
analysis is used to extract the language requirements
and to reason about the language constructions in
the domain of service creation. The NGN
applications described by the language have to
access network functions without specific
telecommunication knowledge using standard APIs.

Parlay/OSA interfaces are defined as a set of
object types (classes). An interface defines the
methods that can be called on the objects and their

parameters. Consequently, the language has to
provide constructions for data type and method
definition. To access network function the application
has just to invoke the object methods with actual
parameters, so language constructions for method
invocation and synchronization are needed.
Exceptions can be thrown by any method, so the
language has to provide means for exception
capturing and processing. Any result returned by the
method has to be processed in the context of
application logic and the language has to offer flow
control means and simple arithmetic operations. To
allow time-dependent processing the language
needs time-related data types and methods. In NGN
data plays an essential role in almost all services.

9 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

Many services become increasingly data-centric and
customized, so applications are to access databases
to retrieve data they require.

Based on the domain analysis, SLPL language
constructions are derived and include the following:

• Description of data types, supported by OSA
interfaces and definition of variables of supported
data types (statements for data types and variable
definitions)

• Description of Parlay/OSA interface and
application methods with parameters, type of result
returned and exceptions that might be thrown
(statements for interface and method definitions)

• Invocation of OSA interface methods to access
network functions (invoke-statement)

• Capturing exceptions to define exception
processing (try-catch-statement)

• Method synchronization to provide synchronous
communications (wait-statement)

• Flow control to provide decision making, multiple
choice, action reiteration etc. (if-statement, while-
statement, case-statement)

• Elementary arithmetic operations to allow applying
of simple algorithms (addition, subtraction,
multiplication, division)

• Tools for time measuring and supervision to allow
time-based decision making (timers, operation to
extract time and date)

• Database access to allow retrieve, update, insert
and delete data in external databases (methods for
data retrieve, update and conversion).

In the next section we present some of these
language constructions.

III. SERVICE LOGIC SCRIPT SRTUCTURE

The structure of SLPL service script is modular and
encompasses definition part and executive part. The
definition part involves type definitions, variable
definitions and definition of the methods supported by
the application-side interfaces. The executive part is
build mainly of invocations of methods supported by
the server-side interfaces and processing of results
returned.

SLPL supports all data types defined in
Parlay/OSA interface specifications. Data types are
simple (such as integer, float, string, reference and so
on) and complex (enumerated type, structure type,
sequence of data elements, tagged choice of data
elements). Fig.2 shows an example of type definition
of a tagged choice

Variables of the supported types can be defined
and initialized.

<union name=”TpAoCOrder”

 switch=”TpCallAoCOrderCategory”>

 <on val=”P_CHARGE_ADVICE_INFO”>

 <element name=”ChargeAdviceInfo”

 type=” TpChargeAdviceInfo”/>

 </on>

 <on val=”P_CHARGE_PER_TIME”>

 <element name=”ChargePerTime”

 type=”TpChargePerTime”/>

 </on>

 <on val=”P_CHARGE_NETWORK”>

 <element name=”NetworkCharge”

 type=”string”/>

 </on>

 </union>

Fig.2 SLPL description of a tagged choice data type

The methods’ definition part encompasses
definitions of all application’s methods. Usually these
are methods used by network resources to report to
the application results of service provided and local
methods. Each method has a type (the result type), a
list of arguments, and a list of exceptions that it can
raise. The method body is used to get the results
returned by network resources and to store them in
local variables. Fig.3 shows an example of method
definition in SLPL.

Fig.3 SLPL method definition

The executive part of the service logic script is
built of statements. There are different types of
statements such as: statements for flow control,
assignment statements, invocations of methods
supported by the network-side interfaces, statements
for synchronization and others. Before a method of
network-side interface is to be invoked, values for the
actual method arguments have to be assigned using
assignment-statement.

To request a service from network-side interface,
the application logic has to invoke its methods. When

<method name = ”locationReportReq”>

 <arguments>

 <argument name = “appLocation” type =

“IpAppUserLocationRef” />

 <argument name = “users” type = “TpAddressSet” />

 </arguments>

 <returns>

 <return type = “TpAssignmentID”/>

 </returns>

 <raises>

 <exceptions>

 <exception type = “TpCommonExceptions”/>

 <exception name =

“P_APPLICATION_NOT_ACTIVATED”/>

 </exceptions>

 </raises>

</method>

10 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

a method is invoked, its interface is specified and
actual values of its argument are given. In order to be
complete, there are also constructions dealing with
exceptional situations when invoked method reports
for an error. Fig.4 shows an example of method
invocation with capturing of exceptions.

Fig.4 An example of method invocation with exception

capturing in SLPL

When the application has to wait for the result of
method invocation (synchronous communications) the
wait-statement is used. By invocation of application’s
methods, the network-side interfaces return the
results of the requested service.

Flow control statements such as if-then-else-
statement, case-statement and while-statement are
used to process results returned. If-then-else-
statement is used to check a logical condition and with
case-statement a decision may be done based on
multiple choices. While-statement is used when a set
of iterations has to be repeated till a predefined
condition is evaluated to be true. Fig.5 shows an
example of repeating actions in SLPL.

SLPL supports also simple arithmetic operations
such as addition, subtraction, multiplication and
division.

In telecom applications the notion of time is
important and the use of timers is frequent. The
normal use of time and timers is when modeling
delays, supervising functions to be performed and
measuring intervals. In SLPL, the concept of ‘real’
time is adopted. This notion of time exists and the
service logic may obtain time measurements using
time constructions of the language. Two
parameterless operations are provided to acquire
current data and current time. When applied, the
‘CurrentDate’ will yield a value of the type ‘Date’,

which reflects the current date when it was applied.
In like manner when applied, the ‘CurrentTime’
derives the current time in a value of the type ‘Time’.
The predefined types ‘Date’ and ‘Time’ are based on
the type float. In many applications decisions are
made on the days of week, so the enumerated type
‘Day’ is defined and is used to denote the days of
week.

Fig.5 An example of repeating actions in SLPL

Delays and supervisions are obtained by the
use of ‘Timer’, which also is a predefined type. All
timers used by service logic have to be declared in
the same way as other data objects. The two
operations that can be applied to these objects are
‘set’ and ‘reset’. When a timer is set, it will be
provided with a timeout value given as argument of
the set method. The timeout value will be of type
‘Time’ if the expiry of the timer has the effect
secondly, minutely or hourly. The timeout value will
be of type Date if the expiry of the timer has the
effect daily, weekly, monthly or yearly. Whenever a
service logic which has timers is in a waiting state, all
timers of that service logic are continuously
examined and their values are compared with the
value of ‘CurrentDate’ or ‘CurrentTime’. When the
current time becomes larger than or equal to the time
value kept by a timer, the timer will expire.

In NGN applications and data they require will
be distributed among application servers. The
application may be executed on an external server
and data related to the application may be stored on
remote host. In order to access data, the application
logic must know most likely the IP address or URL of
the remote host to contact and then to formulate a
request to the database server. The application logic
needs knowledge or at least view of database
structure or how the database servers expect to be
queried for information.

Databases are full of interlinked tables of the
variety information the service logic is interested in.
For example, a service offering tourist guide

<try>

 <invoke>

 <interface name=”IpUserLocation”>

 <method name = “locationReportReq”>

 <arguments>

 <argument name = “application” valref =

“theApplication”/>

 <argument name = “users” valref =

“theUsers”/>

 </arguments>

 </method>

 </interface>

 </invoke>

 <catch>

 <exception name

=”P_APPLICATION_NOT_ACTIVATED”>

 <exit/>

 < /exception>

 </catch>

</try>

<set refid=”Tries” value=”3”/>

<while test = “Tries GT 0”>

 <decrease refid=”Tries” by=”1”/>

 <!--invoke sendInfoAndCollectReq method of

IpUICall interface to receive user PIN

code in PININ-->

 <if>

 <condition test =”PIN EQ PININ”/>

 <then>

 <set refid=”PIN” value=”true”/>

 <goto label=”CorectPIN”/>

 </then>

 </if>

</while>

11 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

information has data organized in a table of historical
places linked to a table of historical areas linked to a
table of cities and so on. The service logic may need
information about historical places in an area of a city.
The information required to construct that view might
be stored across several tables in the database.

Common operations on database require
expression of commands, such as retrieve from,
update into, insert into or delete from database. In
SLPL special methods for database access are
defined. The database query in a form of SQL
(structured query language) statement is passed as
method argument. In case of problems with the
database, exceptions can be thrown, caught and
processed.

Markup languages are usually descriptive ones
and possess restricted power for expressing actions.
The SLPL flow control language constructions and
arithmetic operations draw the language near to
expressiveness of programming languages.

IV. ASSESSMENT OF SLPL USING EVALUATION CRITERIA

Evaluation criteria for classification of service
creation technologies are defined in [5]. In brief these
criteria include the following: supported network
capabilities, mapping towards reference architecture,
interface abstraction, kind of interface and description
language, suitability for 3

rd
 party development and

usability.
The suggested mark-up approach to service

creation is based on Parlay/OSA interfaces and all
network capabilities exposed by these APIs are
accessible. SLPL provides application developers with
functional abstraction of underlying network and
allows adding value to call control, data session
control, mobility, user status, charging, user
interaction, messaging and others.
The second criterion defines the place of the SLPL

in NGN service architecture. The SLPL interpreter is
placed either at the application side of the
programmability architecture (Fig.6) or at the Parlay/
OSA gateway side. This means that both the operator
and the 3

rd
 party can support programmability through

SLPL scripting.

The third criterion evaluates SLPL interfaces
regarding interface abstraction as well as the kind of
interface description language. SLPL provides high
level abstraction hiding technical details of network
technology from application developers. The kind of
interface describing communication method by which
SLPL exposes network capability is XML-based. SLPL
is scripting language and the SLPL interpreter parses
the script at runtime.

As the Parlay/OSA technology opens network

interfaces for 3
rd
 party so the SLPL can be used for a

large application developer community.

SLPL might be used for service creation in many
different scenarios: using scripts created by end
users or using scripts created by service providers.
SLPL scripts are highly customized allowing service
or end user specific data to be stored in an external
database.

One of the factors that determine language
usability depends on availability of supporting tools.
For SLPL are developed the following tools:

• Java based Augment Backus Naur Form (ABNF)
translator for syntactical grammar verification and
generation of basic interpreter classes

• Java-based SLPL interpreter

• Translator of Interface Description Language
(IDL) descriptions into SLPL ones.

These tools are presented in the next section.

Another factor that influences on usability of the
suggested service creation approach and
accompanying language is measured in terms of the
knowledge/experience needed. The approach is
based on Parlay/OSA APIs and minimizes necessity
of preliminary knowledge for network protocol and
technologies.

V. SLPL SUPPORTING SOFTWARE TOOLS

Language usability depends on availability of
language supporting tools – concerning scripting
languages this is the interpreter. The interpretation of
the logic is separated into two processing phases –
front one and back one. Fig.7 shows the
interpretational approach of the SLPL service
execution.

3rd party Application

server

Parlay/OSA gateway

3rd party Application

server

APIs

PSTN GSM SIP

INAP
CAP SIP

UMTS

CAP/SIP

SLPL
script

Fig. 6 SLPL script in NGN scenario

12 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

Fig.7 Script interpretation

The front processing phase is in charge of loading
the service script i.e. making an instance of the logic
script.

OSA interfaces are specified in Interface
Description Language (IDL) which is programming
language independent. A huge amount of data types
on which methods operate are included in IDL
specification. To reduce efforts needed for data types
and method definition in SLPL an include-statement is
provided. This construction allows including SLPL
descriptions of methods and data types in the
definition part of the service logic script. These ready-
to-use parts of script are located in the script
repository, accessed in shared library manner. After
including definitions in the original instance, the SLPL
preprocessor produces a merged, extended instance.

The main task of the SLPL lexical analyzer is to
recognize the lexical units of the language like
identifiers, terminal symbols, literals and so on. The
extended instance of service script is lexically
converted into a sequence of tokens and then the
sequence is passed as input to the parser.

The SLPL parser performs syntax analysis of the
input sequence of tokens in order to determine its
grammatical structure with respect to SLPL formal
grammar. The SLPL parser is to decide whether the
sequence is acceptable in the terms of the syntactic
rules of the language. If it is to be rejected, then error
log is open which is omitted from the figure for sake of
simplicity. Parsing transforms input sequence of

tokens into a data structure (a tree), which is suitable
for later processing and which captures the implied
hierarchy of the input.

For example, the language construction for
synchronization wait-statement used to wait for result
of network provided service is formally defined with
the grammar rules shown in Fig.8.

Fig.8 Grammar rules for definition of wait-statement

These grammar rules are built in the parser logic

as a parsing table.

For the input

<wait timeout=”20”/>

the SLPL lexer recognizes the type and value of
the following tokens:

< separator
wait keyword
timeout keyword
= operator
“ separator
20 integer literal
“ separator
/ separator
> separator
The sequence of tokens is passed as input to the

SLPL parser and the abstract syntax tree generated
is shown in Fig. 9.

During real processing for each language
construction recognized correctly by the SLPL
parser, an appropriate Java construction is activated.

SLPL interpreter is written in Java to achieve
portability.

1. wait_def = LB“wait” [timeouted](slash GB/

GB event_list); wait for an even or

timeout

2. timeouted = “timeout” is DQUOTE integer-val

DQUOTE

3. event_list = 1*event_list_item LB slash “wait”

GB

4. event_list_item = LB“event” a_name slash GB
5. a_name = “name” is DQUOTE simple_name

DQUOTE

6. integer_literal = 1*DIGIT
7. simple_name =ALPHA*(ALPHA/ DIGIT/

underscore)

8. slash = %d47; ‘/’

9. is = %d61; ‘=’

10. underscore = %d95; ‘_’

11. LB = %d60; ‘<’

12. GB = %d62; ‘>’

13. ALPHA =%d65-90 / %d97-122; A-Z a-z

14. DIGIT = %d48-57; 0-9

SLPL service
script

Preprocessor

Front processing

Merged

SLPL script

Lexical analyzer

Sequence of

tokens

Parser

Abstract

syntax tree

Back processing

Interpreter

Logic

repository

13 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

Fig.9 Abstract syntax tree built for ‘wait’-statement

Another reason for Java choice as implementation

language is that we use Ericsson Network Resource
Gateway SDK (version R5A02) that simulates
Parlay/OSA interfaces to verify the SLPL functional
capabilities. The interface method calls of Parlay/OSA
interface simulator are form of Java code.

The idea behind the development of SLPL is to be
extensible without reprogramming of the translator
producing SLPL descriptions manually. A translator-
generator is developed i.e. a translator that generates
translators. When supplied with language grammar
rules described in ABNF, this translator-generator
produces as output a Java code that ‘understands’
language syntax.

The translator-generator is used to generate parts
of the SLPL interpreter as it is shown in Fig.10. The
input sequence consists of SLPL grammar rules
formally described in ABNF. Also the semantic Java
rules are passed. The result is the Java source code
of the SLPL interpreter.

Fig.10 Process of generating Java byte code of the

SLPL interpreter

The translator-generator performs lexing, parsing,
semantic analysis and code generation of ABNF

grammar rules. The lexical analysis processes the
input sequence of ABNF rules to produce output
sequence of tokens. The translator-generator’s lexer
recognizes tokens defined with the basic ABNF rules
[12], and the derivate ABNF rules are used to
construct the parsing table. The translator-
generator’s parser builds an abstract syntax tree that
corresponds to the grammar rules of the described
language.

During code generation the syntactically correct
language structures are compared with templates of
semantic descriptions and converted into Java
instructions.

Thus adding new rules in SLPL grammar that
extend or change language expressive power, there
is no need to rewrite the SLPL interpreter manually.

The translator-generator is also used for
generating parts of the translator from IDL to SLPL.

Defining data types and methods in the definition
part of SLPL service logic script is time consuming
and tedious task if done manually. In Parlay/OSA
specifications the structure of data types used in
interfaces is composite and usually nest liked and
there are multiple arguments in interface methods.
Data types and methods in Parlay/OSA
specifications are described in IDL. To reduce time
and effort in service script development, a translator
is developed that translates IDL descriptions in SLPL
descriptions.

Once generated the IDL descriptions of OSA
interface data types and methods can be used as
interface dependant parts in SLPL service logic
scripts and they form the SLPL programming library.

The relationship between SLPL supporting tools
is shown in Fig.11.

IDL to SLPL

Translator

IDL

description
SLPL

description SLPL

Interpreter

Java calls of

OSA network

interfaces

Translator

Generator

BNFIDL BNFSLPL

Fig. 11 SLPL supporting tools

VI. SIMULATION ENVIRONMENT

To validate the approach applicability we use
Ericsson’s Network Resource Gateway (NRG)
Software development kit (SDK).

The NRG simulates the behavior of Service
Capability Servers (SCS). The SCS provides network
service to application and controls network elements

SLPL grammar rules

described in ABNF

Translator-
generator

Java source code of the

SLPL interpreter

Java compiler

Java byte code of the

SLPL interpreter

Java semantic rules

wait_def

(1)

wait timeouted > /

(2)

timeout “ = 20 “

<

14 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

hiding network protocol complexity from application
developers. The NRG simulator mimics the behavior
of an actual NRG node. It simulates not only the node
but also the underlying network resources (such as
telecommunication network). It uses a graphical
interface that allows a user to define the behavior of
network resources.

The NRG SDK offers software API libraries to Java
application developers, which simplify the
development of applications that use NRG
capabilities.

The NRG SDK provides API for several services
including framework, multi-party call control, user
interaction, user location user status and messaging.
Before an application can get access to a service, the
application needs authenticate itself towards the NRG
using the framework API.

Most applications follow a similar design involving
the following classes:

• Main – initializes, starts, stops and terminates the
application

• Configuration – provides application with
configuration data

• Graphical user interface (GUI) – provides a
graphical user interface

• Feature – implements application logic

• YY_processors – use service managers to send
requests to the NRG and to receive callback
responses. A feature (application) can have
multiple processors.
In the next section we provide an example of

application that uses SDK APIs.

VII. CASE STUDY

Let us consider a ‘Tourist guide” application that
provides tourist information about sights in a city.
When a tourist dials the number of ‘Tourist guide’
service, the application locates her position and
selects voice message containing information about
the historical place in vicinity.

The application uses the following classes
available in NRG SDK:

• MPCCProcessor – a multi-party call control
processor that uses service manager interface
IpMPCCManager

• LocationProcessor – a processor used to
determine the user position

• UIProcessor – a processor for user interaction
that uses service manager interface IpUIManager

• IpMPCCManager – an interface for receiving
results and notifications for IpMPCC interface

• IpUIManager – an interface for receiving results
and notifications for IpUICall interface

• IpMPCC – an interface that offers methods for
multi-party call handling

• IpUserLocation – an interface that offers
methods for user location

• IpUICall – an interface that offers methods for
user interaction.

Further for the aim of the application we
developed two more classes:

• DBProcessor – a database processor

• IpDataBase – an interface that offers methods
for database access

The configuration file of the application among the
other contains a map with historical places.

The sequence of actions performed during
application execution is shown in Fig.12.

1 When the tourist dials the number of ‘Tourist
guide’ service, MPCCProcessor is notified about
the event.

2 The event is forwarded to the application.
3 The application requests information about user

location.
4 The LocationProcessor sends a request for

positioning to the user location service.
5 The user location service provides requested

information.
6 The information about user location is forwarded

to the application.
7 The application requests identification of voice

message from the database containing
information about historical places. The
application sends the user coordinates as
parameter.

8 The DBProcessor calls DB_retrieve method to
extract the requested data. The method is
synchronous and the application waits for
response.

9 The result of database query is forwarded to the
application.

10 The application starts dialogue with the user.

11 User interaction session is created with the
tourist.

12 The application sends to the UIProcessor the
identification of the message to be sent.

13 UIProcessor requests from the user interaction
service to play the message.

14 When the message ends this is reported to the
UIProcessor.

15 The application requests to release user
interaction session.

16 The UIProcessor frees the user interaction
service.

17 The application must free the call related
resources in the gateway.

18 The multi-party call control service is released.

The application logic is described in SLPL.

The SLPL interpreter is registered in the
Framework of the NRG. When simulating the

15 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

application behavior, the interpreter is in the role of an
object of class Feature as depicted in Fig.12. The
SLPL interpreter is supplied with the SLPL script of
‘Tourist guide’ application.

When the example application is started, the SLPL
interpreter verifies the syntactical correctness of the
description, generates an abstract syntax tree and
makes the respective mappings of the abstract syntax
tree onto the semantics i.e. calls corresponding Java
methods. The calls of the interpreter are of methods
exposed by the Ericsson’s NRG simulator.

In runtime on request of the user of the ‘Tourist
guide’ application, the current location of the tourist is
obtained and displayed in a map. When the tourist
dials the service number, an announcement is played
if there is a historical place in the vicinity.

Fig.13 shows a screenshot of service simulation.

VIII. CONCLUSION

A new mark-up approach to NGN service creation
is suggested. The approach is based on Parlay/OSA
interfaces addressing the full range of network
capabilities such as call and data session control,
mobility, user interaction, charging and so on.
Language constructions that illustrate the approach
are defined. The language supporting tools allow the
approach usability.

OSA APIs provide medium level of abstraction and
developers need some telecommunication knowledge
when linking components that offer APIs, but as SLPL
posses all attractive feature of scripting languages is
enables rapid prototyping and rapid application
development.

Unlike traditional scripting languages the
expressive power of SLPL draws it near to
programming languages. SLPL nodes for flow control
provide developers with flexibility in logic processing.
Time-related language constructions allow time-
dependent decisions in service logic description.
SLPL constructions for database manipulation and
query enable service logic to consult external
database to retrieve service specific data.

SLPL is functionally richer than CPL and other
XML-based languages for service creation. The
suggested approach and accompanying language
provide easy-to-use and cost effective tools for
service creation in next generation networks.

REFERENCES

[1] Bakker, J. Tweedie, D. and Umnehopa, M. [WWW
document] (2006) Evolving Service Creation; New
developments in network Intelligence, http://www.
argreenhouse.com/papers/jlbakker/Bakker-telenor.pdf

[3] Parlay Group, Parlay APIs Overview, (2004) [WWW
document] http://www.parlay.org/docs/ Spec3_es_2019
1501v010101m.pdf

[3] Sun Microsystems, (2001) The JAIN APIs: Integrated
Network APIs for the Java Platform, [WWW document]
http://java.sun.com/products/ jain/WP2001.pdf (access
January 2004)

[4] Bakker J-L, Jain, R. Next Generation Service Creation
Using XML Scripting Languages, [WWW document]
(2006), http://www.argreenhouse.com/papers/ jlbakker/
bakker-icc2002.pdf

[5] Falcarin, P. Licciardi, C.A. [WWW document] (2006)
Analysis of NGN service creation technologies,
http://softeng.polito.it/falcarin/docs/Annals03.pdf

[6] Lennox, J. Wu, X. , CPL: A Language for User Control
of Internet Telephony Services, RFC 3880, (2004)

[7] W3C, Voice eXtensible Markup Language (VoiceXML)
version 1.0., W3C Note, 2000, [WWW document],
http://www.w3.org/TR/voicexml/

[8] W3C, Voice Browser Call Control: CCXML Version 1.0,
[WWW document] 2007, http://www.w3.org/TR/ccxml/

[9] Bakker, J. Jain, R. [WWW document] (2006) A service
creation markup language for scripting next generation
network services, [WWW document], (2005),
http://www.cs.columbia.edu/sip/drafts/draft-bakker-jain-
scml-00.txt

[11]Ericsson Network Resource Gateway SDK (version
R5A02) [WWW document], (2005) http://www.ericsson.
com/mobilityworld/sub/open/technologies/parlay/tools/p
arlay_sdk

[12] Crocker, D. Overell, P.RFC 2234 - Augmented BNF for
Syntax Specifications: ABNF [WWW document] (2006)

Ivaylo Atanasov received his M.S. degree in electronics

from Technical University of Sofia,
Bulgaria in 1992. Currently he is a PhD
student in Telecommunications
networks. His current position is
Assistant Professor at Faculty of
Communications. His main research
focus is development of open service
platforms for next generation networks.

He is a member of IEEE society.

Evelina Pencheva received her M.S. degree in

mathematics from University of Sofia,
Bulgaria, and PhD degree in
communications from Technical
University of Sofia. Her current position
is Associate Professor in Faculty of
Communications. Her interests include
next generation mobile applications and
middleware platforms.

16 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

Fig.12 Sequence diagram for ‘Tourist-guide’ application

Fig.13 A screenshot of ‘Tourist-guide’ application simulation

 : Feature : MPCC-

Processor

 : UI-

Processor

 : Ip(App)-

MPCCManager
 : Location-

Processor

 : Ip(App)-

UIManager

 : IpUser-

Location
 : Ip(App)-

UICall

 : Ip(App)-

MPCCCall

reportNotification()

extendedLocationReportReq()

extendedLocationReportRes()

start()
createUICall()

say() sendInfoReq()

sendInfoRes()

stop()
release()

deassign()
deassignCall()

handleCall()

requestLocation()

locationReceived()

(1)

(2)

(3)
(4)

(5)
(6)

(10)
(11)

(12)
(13)

(14)

(15)
(16)

(17)
(18)

 : DB-

Processor

 : IpData-

base

DBretrieve() translationRequest()

locationTranslation() (8)

(9)

(7)

17 African Journal of Information and Communication Technology, Vol. 3, No. 1, March 2007

1449-2679/$00 - (C) 2006 AJICT. All rights reserved.

