

 1

Optimally-balanced Hash Tree Generation in Ad Hoc Networks

V. R. Ghorpade1, Y. V. Joshi2 and R. R. Manthalkar2

1.

Kolhapur Institute of Technology, Kolhapur, India, vijayghorpade@hotmail.com

2. SGGSIE&T, Nanded, India

Abstract – Ideally a hash tree is a perfect binary tree with leaves equal to power of two. Each
leaf node in this type of tree can represent a mobile node in an ad hoc network. Each leaf in the
tree contains hash value of mobile node’s identification (ID) and public key (PK). Such a tree can
be used for authenticating PK in ad hoc networks. Most of the previous works based on hash tree
assumed perfect hash tree structures, which can be used efficiently only in networks with a
specific number of mobile nodes. Practically the number of mobile nodes may not be always
equal to a power of two and the conventional algorithms may result in an inefficient tree structure.
In this paper the issue of generating a hash tree is addressed by proposing an algorithm to
generate an optimally-balanced structure for a complete hash tree. It is demonstrated through
both the mathematical analysis and simulation that such a tree is optimally-balanced and can
efficiently be used for public key authentication in ad hoc networks.

Index Terms – Hash Tree, Ad Hoc Network, Authentication

I. INTRODUCTION

In recent years, ad hoc networks
have received more attention, because
of their easy deployment. However the
characteristics of ad hoc networks are
more prone to physical security threats
than the wired network environment. It
includes infrastructure-less
architecture, dynamic network
topology, energy constrained devices
and shared wireless channel.
Therefore it has become a primary
concern of securing an ad hoc
network. Authentication is one of the
major topics in network security. For
authentication, certificate based
approaches are popular in classical
networks. Certificate based public key
authentication schemes are
complicated and requires more
computational power and energy. In a
resource constrained ad hoc network
public key authentication can be done
using a hash tree [1] which requires
less computational power and energy.
A complete binary tree also finds

applications in various group key
generation protocols.

A hash tree is perfect binary tree
having n leaf nodes with the height of

the tree as l , where l is given by

 nl 2log= . Each leaf in the tree

contains hash value of mobile node’s
ID and PK. The value of each
internal node of the tree is a hash
value of the concatenated values of
its two child nodes. Such a tree can
be used for authenticating PK in ad
hoc networks.

Most of the previous works that
employed the hash trees for public
key authentication scheme [2,3,4],

assumed perfect trees with 1
2

−l
 leaf

nodes, to represent a node from an
ad hoc network and did not
investigate the tree structure itself.
While this assumption may hold in

some special cases with 1
2

−l
 mobile

nodes, in other cases when the
number of mobile nodes varies
dynamically, the conventional
algorithms may result in an inefficient
tree structure. To solve this problem

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

7

 2

an algorithm is presented in [5] for
optimal tree construction for any
network size. The scheme presented
in [5] is analyzed in this paper and a
simple algorithm for generating
optimally-balanced complete hash tree
is proposed for any number of leaf
nodes (i.e. 0>n).

The paper is organized as follows.
Section II, presents an analysis of the
scheme presented in [5]. In section III,
an algorithm to build an optimally-
balanced hash tree is proposed.
Section IV presents mathematical
proofs followed by performance
analysis in section V; and section VI
concludes this paper.

II. PREVIOUS WORK

Veronika and Seo [5] in their
proposal have presented an algorithm
to generate an optimal hash tree
structure which can be used in sensor
networks for PK authentication; where
the number of sensors are not of the
order of power of two. If hash trees are
used for PK authentication then it is
important to minimize the number of
nodes with the maximum
authentication path (AP), which is a
set of siblings by which a root can be
reconstructed from the leaf values;
and the tree must be as balanced as

possible. In [5] a parameter 0P is

presented to measure the degree of
optimality by the following probability:

n

n
P 010 −= (1)

where 0P is the probability that a node

has AP length less than maximum,

and 0n is the number of nodes in a

group with the maximum AP length. It
is claimed that the algorithm presented
in [5] constructs a tree with the

maximum possible probability 0P for

given n , where n is network size. To
justify their claim they have given an
example of a network with 21=n

and showed that the value of 0P is

maximum in this case. That is,
minimum number of nodes have
maximum AP length and the value of

0P becomes %52 .

While analyzing the scheme it is
observed that, when the same
algorithm is applied in a group with

17=n and 31=n , then the value of

the parameter 0P becomes 88% and

3.2% respectively. From such and
similar extreme cases it is clear that

with 12 1
+=

−ln the parameter 0P has

maximum value and hence the tree
is optimized. On the other hand with

12 −=
ln the value of 0P is minimum

and therefore the tree is not
optimized.

In [5] it is concluded that, the
number of nodes with longest AP is
made minimal. These results could
not be confirmed in the proposed
paper with an appropriate
experimental setting. The parameter

0P presented in [5] does not give any

correct information about the
optimality of the tree. Also the
complexity of the tree generation
algorithm presented in [5] is more
due to following two reasons: First,
the algorithm demands that the tree
must be represented in the
suggested polynomial form and
secondly, it creates sub-trees and
then concatenates these sub-trees to
form the resulting tree.

III. PROPOSED SCHEME

While using binary trees for
security related applications, such as

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

8

 3

PK authentication and group key
generation, in ad hoc network; it is
important to generate the binary tree
as balanced as possible. A complete
binary tree is said to be optimally
balanced if and only if the leaves are
distributed at level l and 1−l only;
where l is the height of the complete

binary tree and all the leaf nodes on
the last level must occupy the leftmost
spots consecutively. In this paper a
simple algorithm is proposed to
generate an optimally-balanced
complete hash tree for any group size
(i.e. 0>n). The proposed algorithm is
easy to implement and does not
demand to represent the tree in the
polynomial form. It generates a single
tree from the root node and there is no
need of forming sub-trees and then
concatenating them to obtain the
resulting tree. The proposed algorithm
is shown in Figure 1.

Algorithm

Given: number of leaf nodes (n),
height of the complete binary tree

( nl 2log=) and l satisfies
ll n 22 1

<<
− , node index (v)

Output: Tree(T) with n leaf nodes

1. if NULLT = then create root

node

2. set node counter ;1=k set level

;1=d

3. perform step 3 through 12

while(ld <)

4. take the leftmost node at level d

and make it as current node. set

0=v ;

5. perform steps 5 through 10

while(
12 −

<
dv)

6. create left and right child nodes to
the current node v

7. increment node counter k by 2

8. check whether nodes created

(k) exceeds the total nodes in

the tree

 if()12(−≥ nk) stop

9. move to the next node, if present,

at the same level d ; make that

node as current node;

10. increment v and go to step 5

11. increment d

12. go to step 3

13. end

Figure 1: Optimally-balanced complete
hash tree generation algorithm

It is proved in Section IV that the
tree generated with the proposed
algorithm is optimally-balanced in the
sense that the leaf nodes of the tree
are either at level l or 1−l and the

deepest nodes are on the extreme
left hand side of the tree.

IV. MATHEMATICAL ANALYSIS

Theorem: The hash tree built by
above algorithm is optimally
balanced and complete.
Let n be number of leaf nodes in a
given complete binary tree. Prove
that iff n is not of the order of power

of two; then the leaf nodes exist on
last and second last level in the tree.

Assume, rn p
+= 2 where Ν∈p (Ν

is a set of natural numbers) and

1
2

=





p

n
. Then it is to prove that r2

leaves exists on level l and rn 2−
leaves exist on level 1−l , where l is

the height of the complete binary

tree given by  nl 2log= .

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

9

 4

Intuition:

Tree (T) Leaves (n) Height (l) l
n 1−l

n

3 3 2 1

5 4 2 3

6 4 4 2

l
n : # leaves on l th level 1−l

n : # leaves on 1−l th level

Observation:

For every increment in leaf node
count, the number of leaf nodes on
last level increases by 2 and the
number of leaf nodes on second-last
level decreases by 1.
Proof:
Induction is useful to prove the
theorem with trees.
Basis:

Let 3=n : 1=p , 1=r ,

3=l , therefore;

22 == rn
l

 leaves exist

on 3rd level and

rnn
l

21 −=
−

leaves exist

on 2nd level, and

1−
+=

ll
nnn

Inductive Hypothesis:

Assume that the theorem is true for
leaf nodes kn ≥ where 3>k .

Inductive step:
Let us prove that the inductive
hypothesis is true for leaf nodes

1+= kn

Let 12 rn p
+=

 where 11 += rr

)1(2 ++= rn p

From the basis and inductive
hypothesis;

 222 1 +== rrn
l

 leaves

exist on l
th level and,

)1(22 11 +−=−=
−

rnrnn
l

 221 −−=
−

rnn
l

 leaves

exist on 1−l
 th level

but, 1+= kn therefore,

2211 −−+=
−

rkn
l

 1)2(1 −−=
−

rkn
l

leaves exist on 1−l
 th level

Thus, the inductive hypothesis is true
for 1+= kn leaf nodes and, hence

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

10

 5

(by induction), true for all leaf node
counts. Hence it is proved that the
tree built by the proposed algorithm
is optimally-balanced and complete.

V. PERFORMANCE ANALYSIS

Simulation setup:

The proposed algorithm is
implemented using C++ to build a
hash tree and used along with the
network simulator (ns-2) [6]
simulating a Mobile Ad hoc Network
(MANET) with different network
sizes. Standard cryptographic
function SHA1 from OpenSSL
Library [7] is used for computation of
hash values which generates a 160
bit hash. The tree thus built is used
for public key authentication. The
leaf nodes of the tree are attached to
the respective mobile nodes from the
simulated MANET.

Performance Evaluation:

This section provides a detailed
quantitative analysis of the proposed
algorithm. The performance of the
proposed algorithm is evaluated
using communication overhead and
memory requirement per node for
public key authentication. The
algorithm builds a binary tree which
is optimally-balanced for any number
of leaf nodes. These balanced trees
tend to be ‘bushy’: they have few
levels and spread out width-wise.
Trees that are wide and shallow
have only a few levels, precisely

 n2log ; recall that n is the number of

leaf nodes. The experiments are
conducted for network sizes ranging
from 8 to 2048 nodes. The proposed
scheme is compared with a basic
scheme in which the number of
nodes are exactly of the order of
power of two.

A. Communication overhead vs.
network size

Experimental work shows that, the
communication overhead in MANET
depends upon the distance and
number of hops between two
communicating peers, the traffic
scenario, quality and bandwidth of
the channel etc. In the proposed
scheme, in addition to the above
factors; the communication overhead
is proportional to the height of the
tree, while the height of the tree is
decided by the number of mobile
nodes in the network. Therefore, the
size of a network will affect the
performance of the scheme. Figure 2
depicts how the network size affects
the communication overhead.

B. Memory requirement vs. network
size

Each node holds hash value of
the root node and its AP. Since a
balanced tree is rather ‘bushy’, the
number of nodes in the AP are
minimal consuming less memory per
node. Memory requirement per node
changes with the increase in network
size. Figure 3 clearly shows the
trend of memory requirement with
the increase of network size.

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

11

 6

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

Network size

C
o

m
m

u
n

ic
a

ti
o

n
 o

v
e

rh
e

a
d

Proposed scheme Basic scheme

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

Network size

M
e

m
o

ry
 p

e
r

n
o

d
e

 (
b

y
te

s
)

Proposed scheme Basic scheme

Figure 2 : Communication overhead vs. network size Figure 3: Memory requirement vs. network size

VI. CONCLUSIONS

A simple algorithm for generating
an optimally-balanced complete hash
tree is proposed in this paper. Given
any number of leaf nodes, the
algorithm builds a binary tree. Through
mathematical analysis it is shown that
the leaf nodes of the generated tree
exists only on last and second-last
level. Hence, it is concluded that such
a tree is optimally-balanced complete
hash tree. The complexity and
memory requirement of the algorithm
is)(nO and it does not demand to

represent the nodes in polynomial
form to construct the tree.
Experimental results show that, when
the proposed algorithm is used for
public key authentication in MANET;
the AP and per node memory
requirement remains optimal even
though the number of leaf nodes are
not of the order of power of two.

REFERENCES

[1] R. C. Merkle, “Protocols for Public Key
Cryptosystems,” in Proc. IEEE
Symposium on Research in Security
and Privacy, 1980.

[2] W. Du, R. Wang, and P. Ning, “An
Efficient Scheme for Authenticating
Public Keys in Sensor Networks,”
ACM, MobiHoc, 2005.

[3] L. Zhou and C. V. Ravishankar,
“Dynamic Merkel Trees for verifying
privileges in Sensor Networks,” in
Proc. IEEE ICC 2006.

[4] M. Jakobsson and S. Wetzel, “Efficient
Attribute Authentication with
Applications to Ad hoc Networks,”
ACM, VANET, 2004.

[5] V. Kondratieva and S-W Seo,
“Optimized Hash Tree for
Authentication in Sensor Networks,”
IEEE Communications Letters, Vol.
11, No. 2, Feb. 2007.

[6] ns-2 : Network Simulator, available at
http://www.isi.edu/nsnam

[7] OpenSSL : Standard Cryptographic
Library, available at
http://www.openssl.org

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

12

