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 Abstract—In this paper we give a survey of the 

combination of classifiers. We briefly describe basic 
principles of machine learning and the problem of 
classifier construction and review several approaches to 
generate different classifiers as well as established 
methods to combine different classifiers. Then, we 
introduce our novel approach to assess the 
appropriateness of different classifiers based on their 
characteristics for each test point individually. 
 

Index Terms—classifier characteristics, classifier 
combination, ensemble classification, k-nearest neighbor 
classification, logistic regression, machine learning 
 

I. INTRODUCTION 
The field of machine learning seeks to develop 

methods to learn from data. Therefore, computational and 
statistical methods are applied, which connects machine 
learning closely to statistics and theoretical computer 
science. Machine learning is divided into supervised and 
unsupervised learning. In supervised learning, a set of 
data points with known prediction values is given. The 
objective is to model the conditional distribution of the 
prediction values given the data points in order to make 
predictions about future data. According to the 
characteristics of the predicted values, supervised 
learning can be further classified into regression and 
classification. In regression, the prediction values are 
continuous. An example for a regression task is to predict 
a patient’s blood pressure based on clinical data and lab 
results. In classification, the predicted values are distinct 
classes. Examples for classification tasks are spam 
filtering, medical decision support, or fraud detection [1]. 
If no prediction value is given in the data, unsupervised 
learning methods are applied with the objective of 
grouping data points according to similar characteristics, 
e.g. to identify groups of interacting genes. 

In the following we concentrate on classification, 
especially on two-class classification problems, as 
illustrated in Figure 1. 

 

 
 

 
 

Fig. 1. Illustration of a classifier system (t is a class label, x is a 
vector of attribute values). 
 

Formally, the given data set D consists of data points 
(x,t), where x is an n-dimensional vector of attributes and 
t ∈ {0,1} is a class label. From this data set a model f(x) 
of the conditional probability P(t|x) is learned. The 
function f(x) is also called classifier. In order to classify 
an unseen data point xk the classifier computes f(xk) and 
assigns the data point to class tk = 0 if f(xk) ≥ 0.5 and tk = 
1 if f(xk) < 0.5. Some of the most popular classifiers are 
logistic regression, classification trees, artificial neural 
networks, k-nearest neighbors and support vector 
machines. 

Logistic regression – Logistic regression searches for 
an optimal linear separation between two classes. It 
models the posterior probabilities of the classes in terms 
of a logit transformation to ensure that the probabilities 
sum up to one and remain in the range of 0 to 1. The 
parameters of a logistic regression are optimally adjusted 
by maximum likelihood [2]. 

Classification tree – Classification trees classify data 
points by sorting them down a tree where each node 
corresponds to a test on some attribute of the data point, 
and each branch corresponds to one of the possible values 
of this attribute. To build up the tree, all attributes are 
evaluated using a statistical test. The one which classifies 
the data set best is chosen to be placed at the root node. A 
descendant node for each possible value of the attribute is 
created, and the data points are sorted in. The process is 
repeated for each descendant node using the data points 
associated with this node [3]. 

Artificial neural network – Artificial neural networks 
consist of a set of artificial neurons organized in layers. 
The neurons of one layer serve as input for the neurons of 
the next layer and are therefore connected to each other. 
Each neuron takes a vector of weighted inputs, calculates 
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a linear combination of these inputs and outputs a logistic 
transformation of this linear combination. The weights 
are adapted to minimize the deviation of the final output 
of the network to the expected output of the network [4]. 

Support vector machine – Support vector machines 
extent the solution of an optimal linear separation 
problem to the situation where classes are not linearly 
separable. It produces nonlinear decision boundaries by 
constructing a linear boundary in a transformed attribute 
space. An optimal separation is found by maximizing the 
so-called margin, the largest possible distance between 
the separation hyperplane and the data points on either 
side. The points that lie on the margin are called support 
vectors and represent, as a linear combination, the 
solution of a convex optimization problem [5]. 

k-nearest neighbor – k-nearest neighbor classifiers 
search the training set for the k closest neighbors to a 
given test point according to a certain distance measure 
(e.g. Euclidean distance). Commonly, the majority class 
of the neighbors is assigned to the test point, but also a 
probability estimate given by the frequency of the test 
points for which tk = 1 can be returned [6]. 

A. Classifier Evaluation 
To assess the quality of a classifier, a common 

approach is to split the data set into a training set and a 
test set. The training set is used to build the classifier. 
Then the classifier is evaluated by measuring the 
percentage of correctly classified test points, referred to 
as accuracy of the classifier. However, this approach is 
not feasible for small data sets. To overcome this 
problem, the process of training and testing is repeated on 
different splits of the data. In k-fold cross-validation the 
data set is split into k parts, where k times a different part 
is used for testing and the remaining k-1 parts are used for 
training. The k accuracies obtained for the k folds are 
finally averaged. If the number of folds is chosen so that 
the test set of each fold consists of only one test point, the 
validation procedure is called leave-one-out cross-
validation.  

However, for data sets with highly skewed class 
distributions, accuracy was shown to be an inappropriate 
quality measure [7]. For example, a two class data set 
with 70 data points in one class and 30 data points in the 
other class would be classified with an accuracy of 70 
percent by an uninformed classifier that predicts only 
based on class prevalence.  An alternative measure to 
accuracy for assessing the quality of a classifier is the 
area under the ROC curve (AUC). The AUC for the 
example above is 0.5, which corresponds to the true 
situation that the classifier assigns classes to test points 
only randomly. Thus, AUC has found widespread use as 
the measure of choice for evaluating classifier 
performance in the machine learning literature [8]. 

Given m classifier outputs ai for data points of class 0, 
and n classifier outputs bj for data points of class 1, the 
AUC estimate  of the classifier can be shown to be 
equivalent to 
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where 1(⋅) denotes the boolean indicator function that 
returns one if its argument is true, and zero otherwise [9]. 
It is immediately obvious that  is an unbiased estimator 
of the parameter θ = P(A < B), the probability that a 
randomly chosen element A of class 0 is ranked lower 
than a randomly chosen element B of class 1. The value 
of  can thus be used as an assessment of a classifier’s 
discriminatory power (how well it can separate two 
classes). A perfect classifier has  = 1, indicating that 
there exists a threshold along which both classes can be 
separated without error. An uninformed classifier that 
performs no better than chance has  = 0.5. 
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B. Ensemble Classification 
For the data set at hand, traditionally the best classifier 

is selected on the basis of a quality evaluation. Another 
possibility is to combine the collected classifiers to 
construct a classifier that performs better than any of the 
base classifiers [10,11]. Therefore the base classifiers 
have to be diverse but also comparable.  

A consistent ensemble of classifiers can be generated 
e.g. by different initializations, different parameter 
choices or different architectures of the same classifier. 
More successful due to the fact that the classifiers are 
independent of each other is to generate different 
classifiers from different training sets. Well known 
examples are bagging [12] and boosting [13,14]. 
Bootstrap aggregating (short “bagging”) creates n times a 
set of m data points by sampling uniformly with 
replacement from the original data set. Thus some data 
points may be included in the sample multiple times 
whereas other data points do not appear at all. In 
boosting, the single training sets differ systematically as 
the weights for each data points are changed based on the 
previous classification. Another way to force diversity is 
to build a set of classifiers on different sets of features 
[15,16], e.g. speech and image features in identification 
problems. Manipulating the output of the training data is 
particularly useful if the number of output classes is large. 
Then new learning problems can be constructed by 
randomly dividing the output classes into a smaller 
number of subsets of classes [17]. Of course a 
combination of different classifiers trained on the same 
features and by the same training set is also possible. 

Traditionally the results of the different base 
classifiers, which can be class labels or class posterior 
probabilities, are combined by combinatorial functions. 
The majority voting is the simplest of all combinatorial 
functions. The class which is most often predicted by the 
base classifiers is selected. Using functions like sum, 
product, average or median to combine the results of the 
base classifiers presumes that the base classifiers are 
independent of each other, which is hardly ever the case. 
However, if an ensemble consists of similar base 
classifiers with independent noise behavior, the errors are 
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averaged out by the summation. Statistical combination 
methods, e.g. Bayesian combination [18], are another 
possibility to build an ensemble classifier. Finally, 
learning a meta-classifier based on the outputs of 
different classifiers, called stacking [19], can also be seen 
as a decision logic for a multi-classifier system. 

Beside training diverse base classifiers in parallel and 
combining them afterwards, a multi-classifier system can 
also be built of cascading base classifiers or 
hierarchically. Cascading classifiers pass the 
classification results from classifiers to classifiers (which 
take them as input) until the final output is obtained 
through the final classifier in the chain.  However, the 
major disadvantage of this approach is that the later 
classifiers are unable to correct mistakes made by the 
earlier classifiers. The most prominent hierarchical 
classifier systems are decision trees. A particular 
advantage of hierarchical classifier systems is that they 
allow to introduce error checking. 

Like experts in a committee, also classifiers in an 
ensemble have different areas of expertise. By assigning 
equal weights to each of them at combination these 
differences in skills are neglected. Therefore, weighted 
combinations methods are used, where the weights reflect 
the importance or significance assigned to the classifier. 
A more objective measure reflecting the confidence into a 
classifier is its quality found by an independent 
evaluation set. 

C. Classifier Characteristics 
In contrast to the methods mentioned above, our 

approach assesses the confidence into different classifiers 
based on their characteristics and for each test point 
individually. Thus the combination of the classifiers 
emphasizes their strengths while diminishing their 
weaknesses. We elaborate this concept to combine 
logistic regression and k-nearest neighbor classification.  

Logistic regression (LR) models have a long history as 
the primary tool for supervised classification problems 
[20,21,22]. For an n-dimensional data set containing two 
classes, the logistic regression model depends on an n-
dimensional parameter vector β and a scalar β0 in the 
functional form  

     
00 (
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1 xP t x

e β ββ β − ⋅ += =
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Here, x ∈ ℝn

 is alternatively called covariate vector or 
input vector, and t ∈ {0,1} is the class label. The LR 
model thus provides the probability that a given vector x 
belongs to class 1. LR models are examples of 
discriminative models, because they offer a functional 
representation of a discriminatory line—e.g., where P(t = 
1| x,β,β0) = 0.5—that separates the two classes in a data 
set. The LR model output for a data point x depends on 
the distance of x from the discriminatory line:  data points 
x that are far from the discriminatory line have model 
outputs close to zero (for x on one side of the line) and 
close to one (for x on the other side). Data points close to 
the discriminatory line have outputs close to 0.5. 

Generally, the parameters of an LR model are estimated 
by maximum likelihood, i.e., by minimizing the negative 
log likelihood 
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for an m-element data set of input/label pairs (xk,tk). LR 

models are linear in the parameters, and can thus only 
model separating (n-1)-dimensional hyperplanes in n-
space.  

With the same notation as above, a k-nearest neighbor 
(kNN) classifier output can be calculated as 

1
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where i1,…,ik denote the indices of the k points in 

x1,…,xm that are closest (usually in Euclidean distance) to 
the given data point x. The probability estimate for x is 
thus given by the local posterior probability in the vicinity 
of x.  

LR models occupy one end of the spectrum spanned by 
the bias variance tradeoff [23]: Due to their linear nature, 
LR models have high bias, but little variance, compared 
to other (nonlinear) machine learning algorithms. On the 
other end of the spectrum, we can find so-called memory-
based classifiers such as k-nearest neighbors. These 
classifiers are not models in the strict sense of the word, 
because they do not build a functional or probabilistic 
representation of the data. For kNN, the data is the model, 
implying that there is high variability (and low bias) 
between different (finite) data samples drawn from the 
same data distribution. Thus, these two classification 
methodology complement each other well and combine 
the advantages of both rigid model structure (by the LR 
component) and local flexibility (by the kNN component) 
in one classification structure. The goal of this 
combination is to obtain better classification performance.  

It is important to note that the appropriateness of LR 
and kNN depends on the local topology around the data 
point to be classified. An example for two different 
degrees of appropriateness for LR and kNN is shown in 
Figure 2(a) and 2(b), respectively. In Figure 2(a) it can be 
seen that there are several possibilities to separate the two 
classes, depicted by x and o.  The different discriminatory 
lines are illustrated as dashed lines. A data point at the 
position of the solid dot near the center of the figure has a 
similar prediction value for each discriminatory line. In 
contrast, the prediction for the solid dot in the lower third 
of the figure differs for the different discriminatory lines. 
Hence, the application of LR is more appropriate for the 
upper data point than for the lower one. How appropriate 
the application of kNN for a data point is depends on the 
distance to its k nearest neighbors. In Figure 2(b) the k 
nearest neighbors (in this example is k = 4) of the data 
point at the position of the solid dot near the center of the 
figure are closer than the k nearest neighbors of the data 
point at the position of the solid dot in the upper left 
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corner of the figure. Hence, the application of kNN is 
more appropriate for the lower data point than for the 
upper data point. 

 

     
 

     
 

Fig. 2. Illustration of the topological dependency of LR (a) and kNN 
(b) appropriateness. 

 
Our approach to combining LR and kNN models is 

thus by individually weighting the contributions of both 
models for each data point. We assign a larger factor to 
the model we consider more appropriate for a data point, 
and a smaller factor to the other model. The methodology 
to assess the appropriateness of a model for a given data 
points is different for LR and kNN. 

II. CLASSIFIER COMBINATION 
For LR, given a training set, we generate a subset of 

this training set containing 90% of the data points, and 
train an LR model on this reduced set. We do this 10 
times for a total of 10 LR models that are all slightly 
different. We then generate the output of each of these 
LR models on every element of the training set, thus 
obtaining a standard deviation of model outputs for every 
data point. Although these standard deviations are likely 
smaller than those obtained from an independent test set, 
their average can nevertheless serve as a benchmark that 

allows us to judge how appropriate the LR models are. 
The reasoning is that a data point with large standard 
deviation over all LR models is one for which there is 
large variability between the models (high variance), and 
the model output should not be relied upon as much as for 
a data point with lower variance. The mean over all 
standard deviations on the training set is used to provide a 
scale information, as otherwise there is no way to know 
what constitutes a large or small standard deviation, 
respectively. 

The appropriateness of kNN probability estimates is 
based on the distances of the k nearest neighbors to a data 
point. If these distances are large, we consider the 
probability estimate to be less reliable than if the 
distances are small. This is because for larger distances, 
the neighbors are not as close, and the kNN output is not 
as good an estimate of the local probability as in the case 
when the neighbors are in the immediate vicinity of the 
data point. To obtain an average distance value that can 
serve as a benchmark in the same way as the mean 
standard deviation for LR models, we calculate the 
distance of all data points in the training set to their k 
nearest neighbors. We then take the average of this 
distribution of distances, and judge the appropriateness of 
the kNN contribution by relating the kNN distance of a 
particular data point to the mean distance. 

The precise manner in which LR and kNN estimates 
are combined is as follows: Let σ denote the mean 
standard deviation of LR model outputs and d the mean 
distances in the kNN part, both as described above. Also, 
for the ith data point in the test set, let lri denote the LR 
model output (the mean of all 10 trained models), σi the 
standard deviation of the 10 values, nni the kNN 
probability estimate, and di the distance to the k nearest 
neighbors. We measure the (in)appropriateness of the two 
components LR and kNN for this data point as 

        
i

LRapp
σ
σ

=    and   
i

kNN
d

app
d

=     (5) 

respectively. Note that a high value of one of these 
parameters means that the respective model is not 
appropriate, as the point displays above average standard 
deviation or distance. The contribution of each model is 
then weighted with the relative inappropriateness of the 
other model: This means that a point for which the LR 
output is highly inappropriate will assign most of its 
weight to the kNN component, and vice versa.  

The heuristic to calculate a posterior class membership 
probability by combining all these pieces of information 
is 
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Note that by using a convex combination of the two 
model contributions, we again obtain a probability 
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estimate that is in the range of 0 to 1. 

III. EXPERIMENTAL SETUP 
We validated our approach on two different data sets: 

one synthetically generated data set that allows us to 
graphically demonstrate the feasibility of our method, and 
one real-world data set containing clinical information 
about patients with pigmented skin lesions. 

Synthetic data - The synthetic data set, of which the 
training set is depicted in Figure 3, consists of two 
samples drawn from two different Gaussian mixture 
models with different class means and covariance 
matrices. Class 0 comprises 400 data points shown as o; 
class 1 consists of 600 data points marked by x. The 
dashed line shows the class separation by the logistic 
regression model at a threshold of p = 0.5. The two 
highlighted o points are used to provide, in Section IV, 
two examples of how our algorithm weights the 
contributions of LR and kNN differently, based upon our 
assessment of the appropriateness of the two components. 

 

    
 

Fig. 3. Illustration of the synthetic data set. 

 
Melanoma data - The real-world data set was collected 

at the pigmented lesion unit of the Department of 
Dermatology at the Medical University of Vienna, 
Austria. It is divided into the three classes common naevi, 
dysplastic naevi, and melanomas. The class distribution 
(gold standard) is 1290 patients for which a suspicious 
lesion was diagnosed as a common naevus, 224 patients 
with dysplastic naevi, and 105 patients with melanomas. 
For each of the 1619 patients, five clinical data items 
were recorded: the skin type according to Fitzpatrick, 
personal and family history with regard to melanoma, 
whole body naevus count, and skin damage due to sun 
exposure. In our experiments, we investigated the 
dichotomous problem of distinguishing patients with 
common naevi and dysplastic naevi from those with 
melanomas, based only on their clinical information. We 
had previously investigated the performance of a number 
of machine learning algorithms on an extension of this 
data set, which also included lesion features obtained by 

dermoscopy (epiluminescence microscopy) [24]. 
The data sets were split into training and test set. We 

used 60% of the data to train the algorithm, and 40% to 
test it. For the synthetic data set, the training set contained 
a total number of 240 data points from class 0, and 360 
data points from class 1. The test set contained the 
remainder: 160 data points from class 0, and 240 data 
points from class 1. For the melanoma data set, the 
training set consisted of 909 data points from class 0 
(common naevi and dysplastic naevi) and 63 data points 
from class 1 (melanomas). The test set consisted of the 
remaining 605 data points from class 0 and 42 data points 
from class 1. To consider the influence of different data 
set splits on our algorithm, we applied our approach on 
20 different splits. This means that we randomly 
generated 20 different training and test sets with class 
distributions as described above. We calculated the area 
under the ROC curve for all of these splits and for all 
three algorithms (LR and kNN considered separately, and 
combined by our method). Our final performance 
numbers are the means of AUCs over all data set splits. 

IV. RESULTS AND DISCUSSION 
In Table 1, we compare our results with those of LR 

and kNN applied separately. We fixed the value of k = 10 
in our k-nearest neighbor calculations. The AUC values 
of LR for each of the 20 splits were calculated by 
averaging the posterior class membership probabilities of 
all 10 models generated for assessing the variability of 
LR model outputs. The entries in Table 1 are the average 
(over 20 splits) of these averages (over 10 models). 
Besides these mean AUC values, we also report the 
standard deviations (SD) for LR, kNN, and our method of 
combination (denoted by “comb” in the table) on the 
synthetic and biomedical data set. It can be seen that our 
method achieves a higher classification performance for 
both data sets. 

 
 synthetic data melanoma data 
 AUC SD AUC SD 

LR 0.774 0.013 0.677 0.032
kNN 0.776 0.011 0.747 0.035
comb 0.794 0.011 0.785 0.038

 
Tab. 1. Performance comparison. 

 
The advantage and novelty of our approach to data 

classification can be attributed to the heuristic method we 
use to combine LR model outputs and kNN local 
probability estimates. To illustrate this point, we consider 
the two data points highlighted in Figure 3. Both of the 
points belong to class 0. In this figure, the LR model 
classifies all points to the left of the dashed 
discriminatory line as belonging to class 1, and all points 
to the right of the line as belonging to class 0. In the 
following, we will use the notation of Equations (5) and 
(6). For the training set shown in Figure 3, the average 
standard deviation over the 10 LR models was σ = 
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0.0071, and the average distance of a data point to its k = 
10 nearest neighbors was d = 3.8872.  

The first point (on the left side of the LR 
discriminatory line) was misclassified by the LR model, 
since it is on the wrong side of the line (the LR model 
output was lri = 0.6282). In contrast, the kNN probability 
estimate was nni = 0.2, which is closer to the true value of 
0. The LR variability estimate of this data point was σi = 
0.0067, and the kNN distance was di = 3.1074. The two 
measures of appropriateness, as defined in Equation (5), 
were thus appLR = 0.9437 and appkNN = 0.7994. This 
means that the LR model is less appropriate than the kNN 
part; the LR component therefore only contributes 0.4586 
to the combined model, as calculated by the weighting 
factors in Equation (6). The remaining weight of 0.5414 
is assigned to the kNN contribution, resulting in an 
overall combined model output of 0.3964. By weighting 
the correct kNN contribution more heavily than the 
incorrect LR contribution, our method was able to correct 
the error of the LR model. 

The second data point (on the right side of the 
discriminatory line) was classified correctly by the LR 
model, with a value of lri = 0.2577. For this point, the 
kNN estimate is incorrect, with nni = 0.8. Because of the 
values σi = 0.0114 and di = 8.1644, which result in 
appropriateness estimates of appLR = 1.6056 and appkNN = 
2.1003, the incorrect contribution of the kNN component 
is weighted less heavily than the correct contribution of 
the LR component. The combined model estimate was 
0.4927. The kNN contribution was downweighted, and 
not large enough to cause an incorrect classification at the 
p = 0.5 LR threshold. 

By weighting the contributions of both classifiers for 
each data point we consider their characteristics. Being 
limited to linear discriminatory hyperplanes, LR models 
have less variance than kNN classifiers. However, with 
increasing distances of the k nearest neighbors, the class 
prediction of a kNN classifier becomes less accurate. In 
this case, the LR output is considered to be more 
appropriate. On the other hand, if there is (relatively) high 
variability between the 10 LR models we generate, we 
assess the local probability estimate of kNN more 
appropriate. 

Our experiments showed that our method of combining 
LR and kNN classifiers achieves a higher classification 
performance than the individual classifiers, both on a 
synthetically generated data set and on a biomedical data 
set. The improvement on the biomedical data set was 
higher than the improvement on the synthetic data set. 
We speculate that this may be due to the data set 
characteristics: The synthetic data set consists only of 
real-valued features, whereas the melanoma data set 
contains real, ordinal and categorical features. We 
presently investigate which data set characteristics may 
have an influence on the success of our method. 

Possible directions for future research lie in the 
investigation of different heuristics for assessing the 
variability of LR models (possibly by bootstrapping 
methods), and in alternative  methods to improve the kNN 

component of the model, either by applying adaptive kNN 
methods [25], or by weighting the distance calculations 
by the LR β coefficients. 

V. SUMMARY 
In this paper we presented the context for combining 

classifiers. We reviewed several approaches to generate 
different classifiers as well as established methods to 
combine different classifiers. Then we introduced a novel 
ensemble method to weight different classifiers based on 
their characteristics and for each test point individually. 
We elaborate this approach by combining a rigid LR 
model with the local flexibility of a kNN classifier. The 
individual weighting of both models for each given data 
point exploits the strength of LR, having little variance, as 
well as the strength of kNN, having low bias. Our 
experimental results on a synthetic and a biomedical data 
set confirm the feasibility and power of our approach. 
The combination of the models achieves, on both data 
sets, a higher classification performance than the 
individual models. 

ACKNOWLEDGEMENTS 
This work was supported by the Austrian Genome 

Program (GEN-AU), project Bioinformatics Integration 
Network (BIN III). 

REFERENCES 
[1] Christian Baumgartner, Christian Böhm, Daniela Baumgartner, et 

al., “Supervised machine learning techniques for the classification 
of metabolic disorders in newborns,” Bioinformatics, vol. 20, pp. 
2985-2996, 2004. 

[2] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and 
artificial neural network classification models: a methodology 
review,” Journal of Biomedical Informatics, vol. 35, pp. 352–359, 
2002. 

[3] J. Quinlan, C4.5: Programs for Machine Learning, Morgan 
Kaufmann Publishers, 1993. 

[4] C. Bishop, Neuronal Networks for Pattern Recognition, Oxford 
University Press, 1995. 

[5] N. Cristianini and J. Shawe-Taylor, An Introduction to Support 
Vector Machines, Cambridge University Press, 2000. 

[6] T. Mitchell, Machine Learning, McGraw Hill, 1997. 
[7] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy 

estimation for comparing induction algorithms,” Proceedings of 
the 15th International Conference on Machine Learning, 1998, pp. 
445-453. 

[8] A. Bradley, “The use of the area under the ROC curve in the 
evaluation of machine learning algorithms,” Pattern Recognition, 
vol. 30, pp. 1145-1159, 1997. 

[9] D. Bamber, “The area above the ordinal dominance graph and the 
area below the receiver operating characteristic graph,” Journal of 
Mathematical Psychology, vol. 12, pp. 387-415, 1975. 

[10] K. Chen, L. Wang, H. Chi, “Methods of combining multiple 
classifiers with different features and their application to text-
independent speaker identification,” International Journal of 
Pattern Recognition and Artificial Intelligence, vol. 11, pp. 417-
445, 1997. 

[11] Y.S. Huang, C.Y. Suen, “A method of combining multiple experts 
for the recognition of unconstrained handwritten numerals,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol.17, 
pp. 90-94, 1995 

[12] L. Breiman, “Bagging predictors,” Machine Learning, vol.24, pp. 
123-140, 1996. 

[13] Y. Freund and R.E. Schapire, “Experiments with a new boosting 
algorithm,” Proceedings of the 13th International Conference on 
Machine Learning, pp. 148-156, 1996. 

89 African Journal of Information and Communication Technology, Vol. 5, No. 2, June 2009

1449-2679/$00 - (C) 2009 AJICT. All rights reserved.



 

[14] Y. Freund and R.E. Schapire, “A decision-theoretic generalization 
of on-line learning and an application to boosting,” Journal of 
Computer and System Sciences, vol. 55, pp. 119-139, 1997. 

[15] K. Cherkauer, “Human expert-level performance on a scientific 
image analysis task by a system using combined artificial neural 
networks,” Working Notes of the AAAI Workshop on Integrating 
Multiple Learned Models, pp. 15-21, 1996. 

[16] R. Ranawana und V. Palade, “A neural network based multi-
classifier system for gene identification in DNA sequences,” 
Neural Computing and Applications, vol. 14, pp. 122-131, 2005. 

[17] T.G. Dietterich and G. Bakiri, “Solving multiclass learning 
problems via error-correcting output codes,” Journal of Artificial 
Intelligence Research, vol. 2, pp. 263-286, 1995. 

[18] Z. Ghahramani and H. Kim, “Bayesian Classifier Combination,” 
Gatsby Technical Report, 2003. 

[19] D.H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, 
pp. 241-259, 1992. 

[20] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and 
artificial neural network classification models: a methodology 
review,” Journal of Biomedical Informatics, vol. 35, pp. 352–359, 
2002. 

[21] F. Harrell, Regression Modeling Strategies: With Applications to 
Linear Models, Logistic Regression, and Survival Analysis, 
Springer, 2001. 

[22] D. Hosmer and S. Lemeshow, Applied Logistic Regression, John 
Wiley & Sons, 2nd Edition, 2000. 

[23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of 
Statistical Learning: Data Mining, Inference, and Prediction, 
Springer, New York, 2001. 

[24] S. Dreiseitl, L. Ohno-Machado, S. Vinterbo, H. Billhardt, and M. 
Binder, “A comparison of machine learning methods for the 
diagnosis of pigmented skin lesions,” Journal of Biomedical 
Informatics, vol. 34, pp. 28–36, 2001. 

[25] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest 
neighbor classification,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 18, pp. 607–616, 1996. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Melanie Osl, MSc, received her MSc degree from the University of 

Medical Informatics and Technology (UMIT) in 
Hall, Austria. She is currently a PhD student at the 
Institute of Biomedical Engineering at UMIT. Her 
research interests include knowledge discovery and 
data mining in biomedicine, clinical bioinformatics 
and machine learning.  
 
Christian Baumgartner, PhD, is Associate 

Professor of Biomedical Engineering and head of the Institute for 
Biomedical Engineering at the University of 
Health Sciences, Medical Informatics and 
Technology (UMIT). He received his MSc and 
PhD degree (1998) in Biomedical Engineering at 
Graz University of Technology, Austria, his 
habilitation (2006) at UMIT, and is the author of 
more than 50 publications in referred journals, 
book sections and conference proceedings. From 

2007-2008 he was a visiting scientist at the Barnett Institute of Chemical 
and Biological Analysis, Northeastern University, Boston, MA and 
Harvard Medical School. His main research interests include data 
mining and knowledge discovery in biomedicine, clinical 
bioinformatics, and computational systems biology. 
 
Bernhard Tilg, PhD, is Full Professor of Medical Informatics at the 
University for Health Sciences, Medical Informatics and Technology 

(UMIT), Hall in Tirol, Austria.  He was the rector 
of UMIT between 2004 and 2008. In 1991 and 
1995 he got the diploma and the doctor degree in 
electrical engineering from Graz University of 
Technology, respectively. Before February 2002, 
he was an Associate Professor for Biomedical 
Engineering at Graz University of Technology. His 
main research interests are biomedical signal 

processing and imaging, physiological modeling and simulation, inverse 
problems and estimation theory, and biomedical sensors. 
 
Stephan Dreiseitl, PhD, received his MSc and PhD degrees from the 

University of Linz, Austria, in 1993 and 1997, 
respectively. He worked as a visiting researcher at 
the Decision Systems Group/Harvard Medical 
School before accepting a post as professor at the 
Upper Austria University of Applied Sciences in 
Hagenberg, Austria, in 2000. He is also an adjunct 
professor at the University of Health Sciences, 
Medical Informatics and Technology in Hall, 
Austria, and adjunct faculty at the Decision 

Systems Group/Harvard Medical School in Boston, USA. His research 
interests lie in the development of machine learning models and their 
application as decision support tools in biomedicine. 
 

90 African Journal of Information and Communication Technology, Vol. 5, No. 2, June 2009

1449-2679/$00 - (C) 2009 AJICT. All rights reserved.


	I. INTRODUCTION
	A. Classifier Evaluation
	B. Ensemble Classification
	C. Classifier Characteristics

	II. CLASSIFIER COMBINATION
	III. EXPERIMENTAL SETUP
	IV. RESULTS AND DISCUSSION
	V. SUMMARY

