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Abstract
Natural hazards significantly threaten the built environment and infrastructure, resulting 
in a sudden and significant increase in reconstruction demand. Such an unforeseen 
post-disaster demand surge for reconstruction can inflate costs up to 50%, impeding 
prompt and efficient reconstruction efforts. The current study aimed to quantify the effect 
of disasters on construction wages in three Gulf Coast states (Louisiana, Texas, and 
Florida). To accomplish this, spatial Durbin models were utilized with a difference-in-
differences specification to allow for feedback and spillover effects across counties. The 
results show that the impact of a disaster on construction wages works with a lag. Natural 
disasters caused a decrease in construction wages in the impacted counties during the 
disaster quarter, compared to counties that were not affected. However, construction 
wages increased one quarter later in the disaster-affected counties compared to the 
non-affected counties. The direct, indirect, and total effects of disasters on the counties’ 
wages indicate significant feedback and spillover effects across counties when a county 
experiences a disaster. The findings of this study carry significant policy implications for 
the city’s policymakers and decision-makers.
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Introduction
Rapid climate changes over recent decades have led to a significant rise in catastrophic events, causing 
widespread devastation globally (Ripple et al., 2024). Each year, the United States faces over a hundred 
natural disasters, resulting in numerous deaths and billions of dollars in damage to property and 
infrastructure (Smith, 2024). The total cost of 400 weather- and climate-related disasters since 1980 in the 
United States has reached approximately $2.8 trillion (Smith, 2020). Timely and effective reconstruction 
and recovery efforts are crucial to ensuring a community’s safety, survival, and long-term resilience in the 
wake of disasters (McEntire, 2021; Zhou, Zhang, and Evans, 2022; Kim, 2023). However, the unanticipated 
rise in reconstruction costs following disasters often hinders recovery efforts, exacerbating both direct and 
indirect economic losses (Pradhan and Arneson, 2021; Kim and Shahandashti, 2022b; Li et al., 2022; Kim, 
Shahandashti, and Yasar, 2023).

The sudden and substantial reconstruction cost inflation in the aftermath of disasters is often explained 
by the demand surge phenomenon (Ahmadi and Shahandashti, 2020; Kim and Shahandashti, 2022a). 
Demand surge is a socioeconomic phenomenon indicating that the reconstruction demand exceeds the 
regional supply capacity, and subsequently, the reconstruction costs increase after a disaster (Olsen and 
Porter, 2013). After Hurricane Katrina, most construction materials experienced statistically significant 
price inflation (Khodahemmati and Shahandashti, 2020). Sewer and water tubing pipe costs have 
increased by 10% following the Texas winter storm in 2021 (Kim and Shahandashti, 2022b). After the 
2006 Yogyakarta earthquake in Indonesia, the wages and employment rate in the construction industry 
increased the most among industries as the demand for construction labor increased (Kirchberger, 2017). 
Similarly, Zhu, et al. (2021) reported that meteorological disasters, including floods, typhoons, droughts, and 
snow, increased wages in China between 2010 and 2018. Quantifying the spatiotemporal impact of disasters 
on reconstruction costs can enhance the accuracy of disaster loss assessments and inform more effective 
post-disaster recovery planning (Markhvida et al., 2020; Yabe, Zhang, and Ukkusuri, 2020).

Post-disaster demand surges in the construction industry have often been exacerbated by the significant 
regional labor market disruptions that follow major disasters (Ginn, 2022). Disasters often create an urgent 
need for construction workers, resulting in labor shortages that drive up wages (Pradhan and Arneson, 
2021). Particularly, the availability of skilled labor is one of the major determinants of post-disaster 
construction cost inflation (Charles, Chang-Richards, and Yiu, 2022). Following Hurricanes Katrina 
and Rita in 2005, the influx of federal recovery funds and insurance payouts spurred high demand for 
construction labor, but a lack of local skilled workers led to significant wage inflation (Groen, Kutzbach, 
and Polivka, 2020). In addition, workforce migration patterns influence labor supply, as workers move 
to unaffected regions, exacerbating shortages in disaster-affected areas (Agarwal Goel et al., 2024). For 
example, after Hurricane Katrina struck New Orleans in August 2005, more than 100,000 residents moved 
to Houston, Texas (Davis et al., 2023). Döhrmann et al. (2021) found that post-disaster labor market 
distortions vary by geographic and economic conditions. Empirical research has also emphasized that 
the magnitude and duration of post-disaster construction demand depend on factors such as the severity 
of damage (Mushtaha et al., 2025), government intervention (Zhu et al., 2021), and insurance payouts 
(Wedawatta et al., 2023).

Previous research has analyzed the effects of disasters on the construction industry using a two-step 
approach: measurement and quantification (Ahmadi and Shahandashti, 2020; Arneson et al., 2020). 
Ahmadi and Shahandashti (2020) measured the labor wage changes and then applied spatial panel data 
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models using the measured labor wage changes to capture spatial interactions in the post-disaster wage 
changes across counties. However, this two-step approach can amplify errors or bias, increasing the 
complexity of the model specification (Vella and Verbeek, 1999). Moreover, Ahmadi and Shahandashti 
(2020) omitted missing data in the spatial analysis instead of imputing the missing values. Therefore, they 
consequently ignored many spatial relationships and complexities arising from the missing data (Buuren, 
2018). The majority of disaster research has emphasized the static impact of disasters on the construction 
industry during the recovery phase. However, disaster recovery is a dynamic process that evolves over 
time, involving interactions with surrounding communities and broader economic market conditions 
both spatially and temporally. The lack of spatiotemporal analysis on the dynamic effects of a disaster on 
construction wages can challenge reconstruction engineers, policymakers, and disaster mitigation agencies to 
understand the spatiotemporal dynamics of post-disaster demand surges for construction labor and develop 
comprehensive disaster management and recovery plans.

This study employed spatiotemporal econometric models to analyze the dynamic impact of disasters on 
construction wages in the Gulf Coast states from 2015 to 2019. It utilized quarterly data spanning from the 
first quarter of 2015 to the fourth quarter of 2019 to isolate the effects of natural disasters on construction 
wages. While the 5-year data from 2020 to 2024 are available, the observed fluctuations in construction 
wages during the pandemic and subsequent economic recession may not be primarily attributed to weather-
related disasters or shocks. Therefore, our primary analysis of the effects of weather-related disasters on post-
disaster construction wages focuses on pre-pandemic years.

The research utilized fixed-effects spatial Durbin models with a difference-in-differences (DID) 
specification to assess the spatiotemporal effects on construction wages in a single framework. The DID 
approach examines these effects by comparing changes in average wages before and after the disaster in 
affected counties (treatment group) with those in unaffected counties (control group). Simultaneously, it 
accounts for time-invariant, county-specific factors, common influences, and spatial interactions involving 
the dependent variable, independent variables, and error terms (Hansen, 2022). In doing so, it is found 
that the wages of the disaster-affected counties (treatment group) depend on their own disaster experience 
(direct effect of treatment) and the neighboring counties’ disaster experience (indirect effect of treatment). 
Such analysis helps to accurately and reliably quantify the additional changes in wages resulting from both 
the direct and indirect impacts of disasters, assuming that both the treatment and control groups follow a 
similar trend (Imai and Kim, 2021).

To the best of our knowledge, this research is the first attempt to quantify the direct, indirect, and 
total spatiotemporal lag effects of disasters on construction labor wages. By employing spatial Durbin 
models with spatial lags and weight matrices, this study accounts for the dynamic interactions between 
disaster-affected regions and their neighboring areas over time. This approach allows us to quantify how 
wage increases in one region can spill over and influence wage patterns in adjacent regions, capturing the 
full extent of the spatial and temporal dynamics that traditional models may overlook (Elhorst, 2014). In 
addition to addressing spatial dependencies, the research method also controls for a range of endogenous 
and exogenous factors that could potentially bias the results. Using a DID specification, we controlled 
for time-varying factors such as national economic conditions and other external shocks, isolating and 
estimating the specific effects of disasters on post-disaster construction labor wages.

Methodology

DATA COLLECTION

Construction industry variables: The magnitude of the demand surge has been estimated by the amount of 
post-disaster increases in reconstruction costs, such as labor wages and material costs, compared to the pre-
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disaster level (Olsen and Porter, 2011; Pradhan and Arneson, 2021; Kim and Shahandashti, 2022b; Kim, 
Shahandashti, and Yasar, 2023a). Construction wage inflation is a driving factor that increases construction 
costs after a disaster, highlighting the demand surge phenomenon (Olsen and Porter, 2013; Chang-
Richards et al., 2017; Kim, Chang, and Castro-Lacouture, 2020). Construction wages vary more widely 
than material costs in post-disaster situations due to factors like annual labor agreements and relocation 
expenses (Olsen and Porter, 2013; Kim and Shahandashti, 2022a). Therefore, the average weekly wages in 
the construction industry were selected as a dependent variable for spatiotemporal analysis to estimate the 
effects of disasters on construction wages.

Construction wages can be impacted by various factors beyond the extent of post-disaster reconstruction 
demand growth. For instance, supply chain disruptions due to damaged infrastructure, transportation 
networks, and manufacturing facilities can lead to logistical challenges, higher transportation costs, and 
longer lead times, further escalating construction expenses. Regulatory and policy changes, such as anti-
price gouging laws (Kim, Shahandashti, and Yasar, 2023a) and federal motor carrier safety regulation 
waivers (Kim, Shahandashti, and Yasar, 2023b), also play a critical role in post-disaster construction costs. 
Moreover, broader macroeconomic conditions, such as inflation, interest rates, and fluctuations in material 
and labor prices, can impact reconstruction expenses regardless of the disaster. (Kim and Shahandashti, 
2022b; Castelblanco et al., 2025). If a disaster coincides with a period of economic downturn or supply 
chain disruptions at a national or global level, the cost of rebuilding may be significantly affected (Tang, 
Luo, and Walton, 2024).

To account for these confounding factors, we included other construction market variables, including 
the number of employees and the number of establishments in the construction industry, in the analysis 
(Busenbark et al., 2022). Additionally, the DID specification was implemented to accurately isolate and 
quantify the effects of disasters on construction costs while controlling for these confounding factors 
(Contat et al., 2024). This statistical technique compares changes over time between affected and unaffected 
groups, allowing researchers to separate the specific effects of disasters from other external influences 
(Roth et al., 2023). By controlling for endogenous and exogenous factors, such as pre-existing economic 
conditions and regional labor market variations, the spatial Durbin models with DID specification ensure a 
more precise and reliable assessment of the effects of disasters on construction cost fluctuations (Zhao and 
Wang, 2022).

Moreover, in our spatial DID specification, we included the county fixed effects, which control for time-
invariant unobserved factors (e.g., geographic features or institutional factors), and the time fixed effects, 
which control for any factors that vary from time to time but are common to all counties (e.g., business 
cycles). Including these county fixed and time fixed effects controls for various time-invariant or county-
invariant confounding factors, both observed and unobserved. It is noteworthy that including time fixed 
effects will also control for any observed variables that only vary across time (e.g., inflation). Thus, when we 
include these fixed effects, we must not include such variables, as the coefficient on them will be meaningless 
(Imai and Kim, 2021). Similarly, when we include the county fixed effects, we must not include and try to 
quantify the impact of observed time-invariant county-level variables.

Furthermore, we focused on the time period between 2015 and 2019, deliberately excluding data from 
2020 onward, to isolate and quantify the weather-related effects of disasters on construction costs without 
the confounding influence of pandemic-related supply chain disruptions ( Janz, Gassmann, and Gayoso de 
Ervin, 2024). The COVID-19 pandemic broke out in early 2020 and led to unprecedented supply chain 
disruptions, labor shortages, and economic volatility that significantly affected construction costs worldwide 
(Kim, Makhmalbaf, and Shahandashti, 2024; Castelblanco et al., 2025). By focusing our study on the pre-
pandemic years, we aimed to measure the effects of disasters on construction costs without the confounding 
impact of pandemic-related external global shocks ( Janz, Gassmann, and Gayoso de Ervin, 2024).
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Table 1 shows the data collection of construction industry variables. The employment and establishment 
count data were included in the analysis as control variables to control for their confounding effects on 
construction wages (Blanchflower and Oswald, 1995; Barth and Dale-Olsen, 2011; Green, Heywood, and 
Theodoropoulos, 2021).

Table 1.	 Data collection of construction industry variables

Data Definition Period Source

Dependent variable: 
Construction wages

Average weekly wages paid during the 
calendar quarter in the construction 

industry

Q1 2015–
Q4 2019

Bureau of 
Labor Statistics

Control variables:
Employment

Quarterly number of employees in the 
construction industry

Q1 2015–
Q4 2019

Bureau of 
Labor Statistics

Establishment count Quarterly number of establishments 
in the construction industry

Q1 2015–
Q4 2019

Bureau of 
Labor Statistics

Disaster-related data: The independent dummy variable for representing a disaster occurrence was 
selected based on the major disasters declared by the Federal Emergency Management Agency (FEMA). 
Figure 1 describes all the major disaster declarations of hurricanes from 2015 to 2019 in three Gulf Coast 
states (Louisiana, Texas, and Florida) that are prone to hurricane strikes.

Figure 1.	 Major disaster declarations of hurricanes from 2015 to 2019 in the Gulf Coast states

MISSING DATA HANDLING

Data imputation methods have been implemented to resolve missing data problems in quantitative studies. 
The spatial multiple imputation was carried out in three sequential steps: (1) creating several complete sets 
by imputing plausible estimates to the missing observations, (2) analyzing the multiple complete datasets 
using a joint spatial distribution, and (3) aggregating the results from the multiple analyses.

DIFFERENCE-IN-DIFFERENCES SPECIFICATION

The DID specification is widely used to estimate a treatment impact on an outcome variable by 
comparing the differences between the control and treatment groups before and after an intervention. 
Figure 2 illustrates the DID specification used in the current research.

SPATIAL DURBIN MODELS WITH A DIFFERENCE-IN-DIFFERENCES SPECIFICATION

The spatial Durbin models (SDMs) with a DID specification were developed to quantify the effects of 
disasters on construction costs. The SDM was chosen over other spatial econometric models because it 

Kim et al.

Construction Economics and Building,  Vol. 25, No. 3/4  December 2025190



effectively captures both the direct and spillover effects of disasters on construction costs (Zhao and Wang, 
2022).

Unlike traditional regression models that assume spatial independence, the SDM accounts for spatial 
dependencies by incorporating both the spatial lag of the dependent variable and the spatially lagged 
independent variables (Nikolaou and Dimitriou, 2024). This is crucial in post-disaster construction markets, 
where cost increases are not confined to directly affected areas but often spread to neighboring regions 
due to factors such as material shortages, labor migration, and supply chain disruptions (Ahmadi and 
Shahandashti, 2020). By including spatial weight matrices and lags, the SDM allows us to measure how 
cost changes in one region influence cost variations in surrounding areas, providing a more comprehensive 
assessment of disaster-induced demand surges (Elhorst, 2014). Equation (1) presents the estimation model 
for examining the wage effect of disasters.

	 lnWAGEit = β0 + β1DISit + β2EMPit + β3ESTit + αi + αt + εit ,� (1)

where WAGEit denotes the average weekly wage in the construction industry for county i at time t, and DISit 
denotes a binary indicator (dummy variable) set to one if county i experienced a hurricane declared as a 
major disaster by the FEMA at time t, and zero otherwise. EMPit denotes the number of employees in the 
construction industry in county i at time t, ESTit denotes the number of establishments in the construction 
industry in county i at time t, αi denotes the vector of the unobservable time-invariant fixed effects specific 
to each county, αt denotes the vector of the unobservable county-invariant fixed effects specific to each 
time period, εit denotes the time-varying idiosyncratic error at time t, and DISit denotes a binary indicator 
(dummy variable) set to one if county i experienced a hurricane declared as a major disaster by the FEMA 
at time t, and zero otherwise. EMPit denotes the number of employees in the construction industry in 
county i at time t, ESTit denotes the number of establishments in the construction industry in county i 
at time t, αi denotes the vector of the unobservable time-invariant fixed effects specific to each county, αt 
denotes the vector of the unobservable county-invariant fixed effects specific to each time period, and εit 
denotes the time-varying idiosyncratic error.

There are likely endogenous interaction effects between the counties’ dependent variables, exogenous 
interactions between the explanatory variables of interest, and interaction effects among the error terms 

Figure 2.	 Difference-in-differences specification
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(Elhorst, 2014). Thus, to incorporate these spatial dependencies, the dynamic SDM for Louisiana was used 
as presented by Equation (2):

lnWAGEit = �β0 + τWAGEit–1 + φWijWAGEjt–1 + ρWijWAGEjt + β1DISit + β2EMPit + β3ESTit + δ1WijDISjt  
+ δ2WijEMPjt + δ3WijESTjt + αi + αt + εit,� (2)

i = 1, …, 64 and t = 2015, 2016, 2017, 2018, 2019,

where WAGEit is the average weekly wage in the construction industry in county i at time t, Wij is the 
64 × 64 spatial weight matrix representing the queen contiguity relationships among the 64 counties in 
Louisiana, WAGEit–1 is the temporally lagged construction wage, WijWAGEjt–1 is the temporally and spatially 
lagged construction wages, WijWAGEjt is the spatially lagged construction wage, and DISit is a binary 
indicator (dummy variable) set to one if county i experienced a hurricane declared as a major disaster by 
the FEMA, and zero otherwise. EMPit is the number of employees in the construction industry in county 
i at time t, ESTit is the number of establishments in the construction industry in county i at time t, ρ is the 
spatial dependence parameter, αi is the vector of the unobservable time-invariant fixed effects specific to 
each county, αt is the vector of the unobservable county-invariant fixed effects specific to each time period, 
εit represents the time-varying idiosyncratic error, ρWijWAGEjt is the endogenous interaction effects, and 
δ1WijDISjt , δ2WijEMPjt , δ3WijESTjt are the exogenous interaction effects.

Disaster often has a lagged effect on the post-disaster construction industry (Capelle-Blancard and 
Laguna, 2010; Hallegatte et al., 2011; Higuchi et al., 2012; Naqvi and Rehm, 2014; Kajitani and Tatano, 
2018). Thus, Equation (3) presents the dynamic SDM with a temporally lagged independent variable to 
examine the lagged effects of disasters on the county-level construction wages one quarter after the disasters 
occurred:

lnWAGEit = �β0 + τWAGEit–1 + φWijWAGEjt–1 + ρWijWAGEjt + β1DISit–1 + β2DISit + β3EMPit  
+ β4ESTit + δ1Wij l.DISjt + δ2Wij DISjt + δ3Wij EMPjt + δ4Wij ESTjt + αi + αt + εit ,� (3)

i = 1, …, 64 and t = 2015, 2016, 2017, 2018, 2019,

where WAGEit is the average weekly wages in the construction industry in county i at time t, Wij is the 
64 × 64 spatial weight matrix representing the queen contiguity relationships among the 64 counties 
in Louisiana, WAGEit–1 is the temporally lagged construction wages, WijWAGEjt–1 is the temporally and 
spatially lagged construction wages, WijWAGEjt is the spatially lagged construction wages, and DISit–1 is the 
temporally lagged disaster binary indicator (dummy variable) set to one if county i at time t − 1 experienced 
a hurricane declared as a major disaster by the FEMA, and zero otherwise. DISit is a binary indicator 
(dummy variable) set to one if county i at time t experienced a hurricane declared as a major disaster by 
the FEMA, and zero otherwise. EMPit is the number of employees in the construction industry in county 
i at time t, ESTit is the number of establishments in the construction industry in county i at time t, ρ is the 
spatial dependence parameter, αi is the vector of the unobservable time-invariant fixed effects specific to 
each county, αt is the vector of the unobservable county-invariant fixed effects specific to each time period, 
εit represents the time-varying idiosyncratic error, ρWijWAGEjt is the endogenous interaction effects, and 
δ1Wij l.DISjt , δ2Wij DISjt , δ3Wij EMPjt , and δ4Wij ESTjt  are the exogenous interaction effects.

Figure 3 illustrates the research methodology, outlining the key steps involved in the analysis. It 
illustrates the process from data collection to the development of spatial Durbin models with a DID 
specification, highlighting how feedback and spillover effects across counties were accounted for in assessing 
the impact of disasters on construction wages.

Kim et al.

Construction Economics and Building,  Vol. 25, No. 3/4  December 2025192



Figure 3.	 Research methodology

Results

RESULTS OF LINEAR FIXED-EFFECTS MODELS

Table 2 presents the results from estimating Equation (1) using linear fixed-effects models, both with and 
without imputing the missing data through spatial multiple imputation methods.

The disaster led to a 4% decrease in construction wages in the counties affected by the disaster compared 
to those unaffected, according to the imputed Louisiana dataset. When analyzing the Louisiana dataset 
without imputation, the disaster resulted in a 5% decrease in construction wages. The effect of disasters 
on construction wages in the quarter when the disaster occurred (hereafter, the disaster quarter) is not 
statistically significant in Texas and Florida. The significantly positive relationship between employment 
and wages in the construction industry holds for counties in all three Gulf Coast states. These findings align 
with the results of prior research studies (Blanchflower and Oswald, 1995; Barth and Dale-Olsen, 2011; 
Green, Heywood, and Theodoropoulos, 2021).

RESULTS OF SPATIAL DURBIN MODELS

Table 3 presents the results of spatial Durbin fixed-effects models.
The effect of a disaster on construction wages in the disaster quarter was estimated to be negative at the 

5% significance level based on the imputed panel datasets of Louisiana and Texas. The construction wages 
in the Louisiana counties struck by a disaster (i.e., disaster-affected counties) were estimated to be 4% 
lower than those in the non-disaster-affected counties in Louisiana. Similarly, the construction wages in the 
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Table 2.	 The results from linear fixed-effects models with and without spatial imputation 

State Louisiana Texas Florida

Missing data 
handling 
method

With 
imputation

Without 
imputation

With 
imputation

Without 
imputation

With 
imputation

Without 
imputation

Variables lnWAGE lnWAGE lnWAGE lnWAGE lnWAGE lnWAGE

Disaster −0.04*
(0.02)

−0.05**
(0.02)

−0.02
(0.02)

−0.03
(0.02)

0.00
(0.01)

0.00
(0.01)

Employment 0.02***
(0.00)

0.09***
(0.02)

0.02***
(0.00)

0.15***
(0.01)

0.092***
(0.01)

0.16***
(0.02)

Establishment 
count

0.08**
(0.04)

−0.01
(0.05)

0.01
(0.01)

−0.10***
(0.02)

−0.02
(0.03)

−0.06
(0.04)

Constant 6.24***
(0.17)

6.09***
(0.20)

6.51***
(0.04)

6.08***
(0.09)

5.79***
(0.19)

5.48***
(0.20)

Year_Q 
dummies

Yes Yes Yes Yes Yes Yes

Observations 1,280 1,163 5,080 4,168 1,340 1,317

R-squared 0.24 0.24 0.33 0.35 0.62 0.63

Number of 
counties

64 63 254 227 67 67

Notes: Robust standard errors in parentheses.

*** p < 0.01, ** p < 0.05, and * p < 0.1.

Table 3.	 The results from spatial Durbin fixed-effects models with and without spatial imputation 

State Louisiana Texas Florida

Missing data 
handling 

With 
imputation

Without 
imputation

With 
imputation

Without 
imputation

With 
imputation

Without 
imputation

Variables lnwage lnwage lnwage lnwage lnwage lnwage

Disaster −0.04***
(0.01)

−0.02
(0.02)

−0.03**
(0.01)

−0.02
(0.01)

0.00
(0.01)

0.01
(0.01)

Employment 0.02
(0.02)

0.07
(0.05)

0.02***
(0.00)

0.12***
(0.02)

0.100
(0.07)

0.13
(0.17)

Establishment 
count

0.08
(0.09)

0.06
(0.14)

0.01
(0.01)

−0.10**
(0.04)

0.03
(0.08)

0.02
(0.14)

Wij InWAGE 
(spatially 

lagged wages)

0.31***
(0.07)

0.30***
(0.08)

0.38***
(0.04)

0.35***
(0.04)

0.30***
(0.08)

0.29***
(0.09)
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disaster-affected counties in Texas were measured as 3% lower than the wages in the non-disaster-affected 
counties in Texas. However, such an effect was not significant, both statistically and economically, for the 
counties in Florida.

A disaster’s direct, indirect, and total effects on the construction wage were investigated using fixed-
effects dynamic SDMs in Table 4.

Table 4.	 Direct, indirect, and total effects from spatial Durbin models (imputed datasets)

Variables Disaster Employment Establishment count

Louisiana Main −0.0402***
(0.0143)

0.0245
(0.0156)

0.0830
(0.0882)

Wx 0.0725***
(0.0233)

0.0333**
(0.0163)

0.251**
(0.101)

SR Direct −0.0369***
(0.0132)

0.0287*
(0.0153)

0.103
(0.0867)

Indirect 0.0823***
(0.0282)

0.0538**
(0.0238)

0.361***
(0.133)

Total 0.0454*
(0.0259)

0.0824**
(0.0331)

0.464***
(0.168)

LR Direct −0.0506***
(0.0189)

0.0439*
(0.0226)

0.164
(0.127)

Indirect 0.130***
(0.0471)

0.0993**
(0.0434)

0.640***
(0.231)

Total 0.0792*
(0.0457)

0.143**
(0.0583)

0.804***
(0.292)

State Louisiana Texas Florida

ρ (spatial 
dependencies)

0.27***
(0.03)

0.26***
(0.04)

0.37***
(0.02)

0.31***
(0.03)

0.49***
(0.04)

0.48***
(0.04)

σ 2ε (error 
variance)

0.01***
(0.00)

0.01***
(0.00)

0.01***
(0.00)

0.01***
(0.00)

0.00***
(0.00)

0.00***
(0.00)

Year_Q 
dummy

Yes Yes Yes Yes Yes Yes

Observations 1,216 1,007 4,826 3,591 1,273 1,197

R-squared 0.21 0.16 0.65 0.40 0.59 0.62

Number of 
counties

64 53 254 189 67 63

Notes: Robust standard errors in parentheses. 

*** p < 0.01 and ** p < 0.05.

Table 3.  continued

Kim et al.

Construction Economics and Building,  Vol. 25, No. 3/4  December 2025195



Variables Disaster Employment Establishment count

Texas Main −0.0259**
(0.0121)

0.0210***
(0.00327)

0.0130
(0.00946)

Wx 0.00196
(0.0205)

−0.00341
(0.00797)

−0.0133
(0.0232)

SR Direct −0.0268**
(0.0110)

0.0217***
(0.00320)

0.0122
(0.00938)

Indirect −0.00955
(0.0267)

0.00650
(0.0120)

−0.0144
(0.0334)

Total −0.0364
(0.0241)

0.0282**
(0.0131)

−0.00220
(0.0367)

LR Direct −0.0452***
(0.0173)

0.0364***
(0.00557)

0.0191
(0.0163)

Indirect −0.0449
(0.0610)

0.0332
(0.0295)

−0.0248
(0.0825)

Total −0.0901
(0.0600)

0.0697**
(0.0323)

−0.00568
(0.0912)

Florida Main 0.00211
(0.00667)

0.100
(0.0680)

0.0325
(0.0762)

Wx 0.0130
(0.00919)

−0.0740*
(0.0390)

0.0594
(0.0749)

SR Direct 0.00405
(0.00607)

0.0992
(0.0695)

0.0415
(0.0741)

Indirect 0.0261*
(0.0142)

−0.0443
(0.0770)

0.145
(0.131)

Total 0.0302**
(0.0143)

0.0549
(0.128)

0.186
(0.168)

LR Direct 0.00871
(0.00885)

0.144
(0.109)

0.0784
(0.119)

Indirect 0.0666*
(0.0388)

−0.0251
(0.230)

0.406
(0.397)

Total 0.0753*
(0.0407)

0.119
(0.320)

0.484
(0.478)

Notes: Robust standard errors in parentheses. 

SR, short-run effects; LR, long-run effects. 

*** p < 0.01, ** p < 0.05, and * p < 0.1.

The main effect of disasters on construction wages in the Louisiana panel dataset was estimated to be 
−4.02%. In other words, the construction wages in disaster-affected counties in Louisiana were 4.02% 
lower than the wages in non-disaster-affected counties in Louisiana. This negative effect of a disaster on 
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construction wages can be attributed to the short-run direct effect of −3.69%, the short-run indirect effect of 
8.23%, the long-run direct effect of −5.06%, and the long-run indirect effect of 13%. The Louisiana counties’ 
construction wages decreased by 3.69% in the short run and by 5.06% in the long run in the quarter 
when the county experienced a disaster. However, the Louisiana counties’ construction wages increased by 
8.23% in the short run and by 13% in the long run in the quarter when the county’s neighboring county 
experienced a disaster. In short, the Louisiana counties’ own disaster experience (direct effect of treatment) 
decreased the construction wages in the disaster-affected Louisiana counties, while the neighboring 
counties’ disaster experience (indirect effect of treatment) increased the construction wages in the counties. 
Additionally, the findings indicate that the long-term impact on Louisiana counties is greater than the 
short-term effect. This indicates that the effects of disasters on construction wages, including direct and 
indirect effects, can be magnified in the long run.

The construction wages in disaster-affected counties in Texas were 2.59% lower than those in non-
disaster-affected counties. The main effects of disasters of −2.59% in Texas can be attributed to the short-
run direct effect of −2.68% and the long-run direct effect of −4.52%. The direct effect of a disaster on 
construction wages in the disaster-affected Texas counties was estimated to be negative. This negative direct 
effect of a disaster, which was consistently reported in both Louisiana and Texas, is probably due to the local 
market system crashing immediately after a disaster (Capelle-Blancard and Laguna, 2010; Hallegatte et al., 
2011; Higuchi et al., 2012; Naqvi and Rehm, 2014; Kajitani and Tatano, 2018). However, the indirect effect 
of a disaster on construction wages in Louisiana counties was found to be statistically significantly positive. 
A disaster’s positive indirect effect indicates that the Louisiana counties’ construction wages increase when 
a disaster strikes their neighboring counties. This result seems plausible because the post-disaster surge in 
construction labor demand can be met by construction labor supply from the adjacent counties, inflating 
the construction wages in the neighboring disaster-affected county (Sadri et al., 2018). The main effect of a 
disaster on construction wages was not found statistically significant in the Florida counties.

RESULTS OF THE SPATIAL DURBIN MODELS WITH LAGGED DISASTER VARIABLES

The SDMs incorporating lagged disaster variables were constructed to investigate the delayed 
spatiotemporal impacts of disasters on construction wages, taking into account spatial interactions and 
dependencies between counties. Table 5 presents the results of the SDMs with the first-lagged disaster 
variable.

While the disaster variable has a negative or insignificant effect on construction wages in three Gulf 
Coast states, the first-lagged disaster variable consistently demonstrates a statistically significant positive 
impact on wages. The disaster decreased the construction wages in the disaster quarter by 3.38% but 
increased the wages by 4.69% one quarter after the disaster in Louisiana. This lagged effect of a disaster on 
construction wage inflation is attributed to 3.96% of short-run direct effects, −16% of short-run indirect 
effects, 5% of long-run direct effects, and −23.1% of long-run indirect effects in Louisiana. The construction 
wage inflation one quarter after the disaster in Louisiana was influenced by both the positive direct effect 
of a disaster that occurred in a disaster-affected county and the negative indirect effect of a disaster that 
occurred in the adjacent counties in the short run and long run.

The lagged effect of a disaster on construction wage inflation was also reported consistently in the 
other two states, Texas and Florida. A disaster decreased the construction wages in the disaster quarter by 
2.26% but increased the wages by 4.41% one quarter after the disaster in Texas. In Florida, a disaster did 
not significantly affect the wages in the disaster quarter but increased the construction wages by 1.79% 
one quarter after the disaster. A disaster’s direct and indirect effects were also found to positively influence 
construction wage inflation one quarter after the disaster in Texas and Florida.
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Table 5.	� Direct, indirect, and total effects from spatial Durbin models with first-lagged disaster 
variable (imputed datasets)

Variables First-lagged 
disaster

Disaster Employment Establishment 
count

Louisiana Main 0.0469**
(0.0203)

−0.0338**
(0.0137)

0.0288*
(0.0169)

0.0707
(0.0925)

SR Direct 0.0396**
(0.0189)

−0.0286**
(0.0128)

0.0305*
(0.0168)

0.0865
(0.0931) 

Indirect −0.160***
(0.0448)

0.0917***
(0.0267)

0.0376*
(0.0213)

0.343***
(0.131)

Total −0.121***
(0.0409)

0.0631**
(0.0253)

0.0682**
(0.0320)

0.429**
(0.177)

LR Direct 0.0500**
(0.0253)

−0.0366**
(0.0172)

0.0422*
(0.0230)

0.125
(0.127) 

Indirect −0.231***
(0.0652)

0.132***
(0.0392)

0.0604*
(0.0330)

0.520***
(0.197)

Total −0.181***
(0.0617)

0.0952**
(0.0385)

0.103**
(0.0483)

0.645**
(0.264)

Texas Main 0.0441*** (0.0106) −0.0226*
(0.0121)

0.0210***
(0.00360)

0.0152
(0.00984)

SR Direct 0.0450***
(0.0106)

−0.0220**
(0.0110)

0.0213***
(0.00347)

0.0150
(0.0103)

Indirect 0.0255***
(0.00630)

−0.0123
(0.0281)

0.00683
(0.0120)

−0.00644
(0.0359)

Total 0.0706***
(0.0167)

−0.0344
(0.0265)

0.0282**
(0.0128)

0.00856
(0.0407)

LR Direct 0.0742***
(0.0174)

−0.0363**
(0.0170)

0.0348***
(0.00572)

0.0236
(0.0176) 

Indirect 0.0928***
(0.0246)

−0.0451
(0.0623)

0.0317
(0.0282)

−0.00397
(0.0855)

Total 0.167***
(0.0409)

−0.0813
(0.0629)

0.0665**
(0.0306)

0.0196
(0.0962)

Florida Main 0.0179***
(0.00516)

0.00589
(0.00690)

0.114*
(0.0684)

0.0272
(0.0859)

SR Direct 0.0190***
(0.00528)

0.00877
(0.00646)

0.112
(0.0724)

0.0394
(0.0867)

Indirect 0.0155***
(0.00470)

0.0273*
(0.0152)

−0.0569
(0.0658)

0.190
(0.133)

Total 0.0345***
(0.00963)

0.0361**
(0.0165)

0.0548
(0.120)

0.230
(0.179)
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Table 6 presents the results of the SDMs with the second-lagged disaster variable. The spatiotemporal 
analysis using the SDMs with the second-lagged disaster variable provides mixed results for estimating the 
effect of disasters on construction wages two quarters after the disaster.

Table 6.	� Direct, indirect, and total effects from spatial Durbin models with second-lagged disaster 
variable (imputed datasets)

Variables Second-lagged 
disaster

Disaster Employment Establishment 
count

Louisiana Main −0.0132
(0.0160)

−0.0414***
(0.0143)

0.0357*
(0.0194)

0.0777
(0.101)

SR Direct −0.0114
(0.0147)

−0.0364***
(0.0132)

0.0386**
(0.0197)

0.103
(0.103)

Indirect 0.0519
(0.0458)

0.0778***
(0.0282)

0.0494**
(0.0233)

0.557***
(0.208)

Total 0.0406
(0.0430)

0.0414
(0.0264)

0.0880**
(0.0369)

0.557***
(0.208)

LR Direct −0.0141
(0.0201)

−0.0484***
(0.0182)

0.0557**
(0.0279)

0.160
(0.146)

Indirect 0.0812
(0.0733)

0.116***
(0.0447)

0.0886**
(0.0408)

0.751***
(0.258)

Total 0.0671
(0.0715)

0.0681
(0.0440)

0.144**
(0.0612)

0.911***
(0.343)

Texas Main −0.0275**
(0.0116)

−0.0265**
(0.0123)

0.0198***
(0.00346)

0.0168*
(0.00954)

SR Direct −0.0344***
(0.0110)

−0.0264**
(0.0111)

0.0206***
(0.00348)

0.0162*
(0.00986)

Indirect −0.115***
(0.0275)

−0.0170
(0.0279)

0.0149
(0.0129)

−0.0131
(0.0403)

Total −0.149***
(0.0287)

−0.0435*
(0.0259)

0.0355**
(0.0143)

0.00310
(0.0445)

Variables First-lagged 
disaster

Disaster Employment Establishment 
count

LR Direct 0.0289***
(0.00798)

0.0150
(0.00935)

0.157
(0.108)

0.0734
(0.130)

Indirect 0.0470***
(0.0172)

0.0649*
(0.0362)

−0.0436
(0.172)

0.443
(0.335)

Total 0.0758***
(0.0239)

0.0799**
(0.0395)

0.113
(0.262)

0.517
(0.422)

Notes: Standard errors in parentheses. 

SR, short-run effects; LR, long-run effects.

*** p < 0.01, ** p < 0.05, and * p < 0.1.
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Variables Second-lagged 
disaster

Disaster Employment Establishment 
count

LR Direct −0.0648***
(0.0177)

−0.0442**
(0.0172)

0.0346***
(0.00598)

0.0253
(0.0173)

Indirect −0.305***
(0.0712)

−0.0632
(0.0646)

0.0527*
(0.0313)

−0.0182
(0.100)

Total −0.369***
(0.0763)

−0.107*
(0.0646)

0.0873**
(0.0347)

0.00708
(0.111)

Florida Main −0.0211***
(0.00541)

0.00256
(0.00660)

0.141**
(0.0682)

−0.00481
(0.0868)

SR Direct −0.0230***
(0.00560)

0.00477
(0.00624)

0.140*
(0.0733)

−0.000681
(0.0883)

Indirect −0.0209***
(0.00539)

0.0174
(0.0166)

−0.0568
(0.0747)

0.0967
(0.148)

Total −0.0440***
(0.0105)

0.0222
(0.0177)

0.0828
(0.138)

0.0960
(0.201)

LR Direct −0.0350***
(0.00835)

0.00845
(0.00909)

0.196*
(0.110)

0.00847
(0.134)

Indirect −0.0655***
(0.0215)

0.0438
(0.0409)

−0.0141
(0.218)

0.228
(0.386)

Total −0.100***
(0.0278)

0.0522
(0.0444)

0.182
(0.318)

0.237
(0.484)

Notes: Standard errors in parentheses. 

SR, short-run effects; LR, long-run effects.

*** p < 0.01, ** p < 0.05, and * p < 0.1.

Table 7 presents the results of the SDMs with the third-lagged disaster variable. The SDMs with the 
third-lagged disaster variable were implemented for the spatiotemporal analysis to examine the effect of 
disasters on construction wages three quarters after the disaster. The disaster variable has a negative or 
insignificant effect on construction wages in the three Gulf Coast states in the disaster quarter. The third-
lagged disaster variable shows an insignificant effect on wages in all three states. It can be implied that a 
disaster occurrence does not have a statistically significant impact on the construction wages three quarters 
after the disaster in Louisiana, Texas, and Florida.

Discussions
This study examined the spatiotemporal impact of a disaster on construction wages across three Gulf Coast 
states to quantify how demand surges influence the post-disaster labor market. The findings revealed that 
the spatiotemporal impact on wages evolved over time following the disaster. In the immediate aftermath, 
during the quarter when the disaster hit, the effect on construction wages in affected communities was 
either negative or not statistically significant. However, the disaster increased construction wages one 
quarter after the disaster in all three Gulf Coast states. The effects of disasters on wages two quarters 
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Table 7.	� Direct, indirect, and total effects from spatial Durbin models with third-lagged disaster 
variable (imputed datasets)

Variables Third-lagged 
disaster

Disaster Employment Establishment 
count

Louisiana Main 0.00514
(0.0186)

−0.0406***
(0.0144)

0.0350*
(0.0185)

0.0926
(0.104)

SR Direct 0.00501
(0.0172)

−0.0370***
(0.0135)

0.0364**
(0.0184)

0.111
(0.105)

Indirect 0.0151
(0.0359)

0.0684***
(0.0258)

0.0337*
(0.0191)

0.458***
(0.139)

Total 0.0201
(0.0304)

0.0314
(0.0229)

0.0701**
(0.0306)

0.569***
(0.177)

LR Direct 0.00692
(0.0226)

−0.0481***
(0.0178)

0.0490**
(0.0246)

0.156
(0.140)

Indirect 0.0219
(0.0501)

0.0933***
(0.0360)

0.0516*
(0.0281)

0.660***
(0.199)

Total 0.0288
(0.0438)

0.0452
(0.0330)

0.101**
(0.0442)

0.816***
(0.256)

Texas Main 0.00622
(0.00884)

−0.0212*
(0.0118)

0.0196***
(0.00383)

0.0146
(0.00958)

SR Direct 0.00457
(0.00823)

−0.0200*
(0.0107)

0.0205***
(0.00383)

0.0127
(0.00985)

Indirect −0.0253
(0.0210)

0.00301
(0.0254)

0.0177
(0.0125)

−0.0376
(0.0385)

Total −0.0207
(0.0206)

−0.0170
(0.0229)

0.0382***
(0.0142)

−0.0249
(0.0427)

LR Direct 0.00564
(0.0124)

−0.0306*
(0.0158)

0.0325***
(0.00611)

0.0175
(0.0160)

Indirect −0.0483
(0.0413)

−0.00433
(0.0488)

0.0459*
(0.0253)

−0.0690
(0.0796)

Total −0.0426
(0.0426)

−0.0349
(0.0471)

0.0784***
(0.0287)

−0.0515
(0.0886)

Florida Main −0.00646
(0.00729)

0.00541
(0.00688)

0.159**
(0.0732)

−0.0319
(0.0897)

SR Direct −0.00851
(0.00652)

0.00879
(0.00640)

0.161**
(0.0767)

−0.0361
(0.0867)

Indirect −0.0226**
(0.0105)

0.0342***
(0.0132)

−0.0124
(0.0720)

−0.0290
(0.124)

Total −0.0311***
(0.00844)

0.0430***
(0.0137)

0.149
(0.141)

−0.0651
(0.180)
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after the disaster were found to be negative or insignificant, varying across states. Three quarters after the 
disaster, there was no statistically significant impact on construction wages. This delayed positive impact 
of a disaster on wage inflation is consistent with the results found in earlier research. Kajitani and Tatano 
(2018) reported that price increases occurred 4 months after the Great East Japan Earthquake in 2011. 
In a case study on Copenhagen, the storm surge immediately devastated the production capacity of the 
overall economic system, and the number of construction jobs started to increase 3 months after the storm 
(Hallegatte et al., 2011).

Table 8 summarizes the effects of disasters on construction wages over time in Louisiana, Texas, and 
Florida. The construction wages one quarter after the disaster in the disaster-affected counties were higher 
than the wages in the non-disaster-affected counties by 4.41%, 4.69%, and 1.79% in Louisiana, Texas, and 
Florida, respectively.

Table 8.	 The effects of disasters on construction wages over time 

Effects of 
disasters

Wages in the 
disaster quarter

Wages 1Q after Wages 2Q after Wages 3Q after

Louisiana −4.02%*** 4.69%** −1.32% 0.51%

Texas −2.59%** 4.41%*** −2.75%** 0.62%

Florida 0.21% 1.79%*** −2.11%*** −0.65%

Notes: *** p < 0.01 and ** p < 0.05.

Figure 4 illustrates a consistent pattern of spatiotemporal dynamic effects of a disaster on construction 
wages in Louisiana, Texas, and Florida. In all three states, construction wages increased one quarter after 
the disaster. However, the effects of disasters on wages became insignificant three quarters after the disaster, 
implying that the post-disaster construction wages were no longer statistically significantly affected by the 
disaster (Lima and Barbosa, 2019).

The spatiotemporal analysis, using dynamic SDMs, leverages spatial relationships among counties to 
estimate both short-term and long-term direct and indirect impacts of a disaster on construction wages. 
In Louisiana, one quarter after the disaster, construction wages in affected counties were 4.69% higher 
than those in unaffected counties. While the disaster’s direct impact in Louisiana led to an increase in 
construction wages one quarter after the event, its indirect impact resulted in a wage decrease in both the 

Variables Third-lagged 
disaster

Disaster Employment Establishment 
count

LR Direct −0.0122
(0.00826)

0.0131
(0.00831)

0.210**
(0.103)

−0.0484
(0.116)

Indirect −0.0402**
(0.0161)

0.0601**
(0.0239)

0.0385
(0.143)

−0.0588
(0.222)

Total −0.0524***
(0.0144)

0.0732***
(0.0256)

0.249
(0.238)

−0.107
(0.306)

Notes: Standard errors in parentheses. 

SR, short-run effects; LR, long-run effects.

*** p < 0.01, ** p < 0.05, and * p < 0.1.
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short term and the long term. This indicates that a disaster occurring in a specific Louisiana county i directly 
raised construction wages within that county, but if the disaster occurred in an adjacent county j, it led to 
a decrease in construction wages in county i one quarter after the disaster. This negative indirect effect of a 
disaster has been discussed in previous studies (Belasen and Polachek, 2009; Kellenberg and Mobarak, 2011; 
Hornbeck and Keniston, 2017; Zeenat Fouzia, Mu, and Chen, 2020; Tran and Wilson, 2022). Belasen and 
Polachek (2009) reported that the earnings in the neighboring counties of the disaster-affected counties 
decreased by 4.51% compared with the earnings in the directly affected counties due to the influx of workers 
to the neighboring counties from the affected counties. The long-run disaster impact on income per capita 
was estimated to be positive in the disaster-affected areas and negative in the broader region (Tran and 
Wilson, 2022).

The construction wage inflation one quarter after the disaster in the disaster-affected counties of Texas 
and Florida was attributed to the positive direct and indirect impacts observed in both the short term and 
the long term. The disaster increased the construction wages not only in the disaster-affected counties but 
also in the neighboring counties of the disaster-affected counties one quarter after the disaster. The positive 
direct and indirect effects of a disaster on wages align with the previous findings in disaster studies (Fu and 
Gregory, 2019; Zeenat Fouzia, Mu, and Chen, 2020; Tran and Wilson, 2022). The demand surge for post-
disaster construction resources inflates the prices of reconstruction resources not only in the disaster-affected 
counties but also in the neighboring counties of the disaster-affected counties (Ahmadi and Shahandashti, 
2020).

The findings of this study have several important practical implications for post-disaster recovery efforts, 
labor market planning, and construction cost management. Understanding the delayed impact of disasters 
on construction wages can help policymakers, contractors, and government agencies anticipate and address 
workforce shortages, labor cost inflation, and project delays more effectively.

One key implication is the potential for project delays due to the temporary stagnation or decline 
in wages in the immediate aftermath of a disaster. The results suggest that while disasters disrupt the 
labor market initially, by displacing workers, causing temporary job losses, or creating uncertainty in 
reconstruction efforts (Kim and Shahandashti, 2022a), wage increases do not occur until one quarter after 
the event. This lag in wage growth may indicate a period where construction activity is slower than expected 
due to difficulties in mobilizing resources, permitting delays, or uncertainty in funding for reconstruction 
projects. As found in previous studies on Japan and Denmark, post-disaster economic disruptions often take 
several months before construction employment and wages start rising (Hallegatte et al., 2011; Kajitani and 
Tatano, 2018).

Figure 4.	 The spatiotemporal dynamic effects of a disaster on construction wages
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From a cost estimation and budgeting perspective, these wage dynamics can significantly impact 
reconstruction costs (Kim, 2023). The increase in wages observed one quarter after a disaster suggests that 
contractors and developers should expect higher labor costs when bidding on projects in disaster-affected 
areas (Pradhan et al., 2023). For large-scale public and private rebuilding projects, failure to account for 
this delayed wage inflation may lead to underbudgeting, cost overruns, or project delays as labor becomes 
more expensive than initially projected (Kim, Abediniangerabi, and Shahandashti, 2021). Policymakers and 
funding agencies should consider adjusting financial assistance programs, subsidies, or wage stabilization 
policies to mitigate the financial burden on rebuilding efforts (Davlasheridze and Miao, 2021).

Furthermore, the study highlights the need for strategic workforce planning in disaster-prone regions. 
States and municipalities should consider policies that encourage the retention and rapid deployment 
of skilled labor in affected areas (Kim and Shahandashti, 2022a). For instance, state governments could 
offer temporary wage incentives or workforce training programs in anticipation of labor demand spikes. 
Additionally, construction firms could develop pre-disaster labor agreements or standby contracts to ensure 
that skilled workers are available immediately after a disaster, reducing delays in reconstruction efforts.

Finally, the spatial variations in wage impacts across Louisiana, Texas, and Florida indicate that 
disaster responses should be tailored to regional labor market conditions. The extent and duration of wage 
inflation may depend on factors such as the severity of damage, the availability of migrant labor, and the 
overall economic resilience of the affected region (Pradhan et al., 2023). Policymakers should consider 
implementing region-specific strategies to stabilize labor supply and prevent excessive wage inflation that 
could hinder equitable reconstruction efforts.

Conclusions
The disaster recovery process is highly associated with the post-disaster construction industry. Despite 
the significance of understanding the post-disaster construction industry to expedite the disaster 
recovery process, the effects of a disaster on construction wages have not been elucidated. Particularly, the 
spatiotemporal analysis of the effects of a disaster on construction wages is needed to clarify the endogenous 
and exogenous interaction effects between communities and enhance the understanding of the dynamic 
process of demand surge in the construction labor market. This study examined the short-term and long-
term spatiotemporal dynamic impacts of a disaster on construction wages at the county level across three 
Gulf Coast states (Louisiana, Texas, and Florida) by utilizing dynamic SDMs with a DID framework.

To the best of our knowledge, this is the first study to examine the spatiotemporal dynamic effects of 
a disaster on construction wages by employing dynamic SDMs with DID specifications that enable us to 
examine the endogenous and exogenous multi-county interaction effects, controlling for the unobserved 
country heterogeneities at one stage. The dynamic SDMs with DID allowed us to quantify efficient and 
consistent estimates of the direct, indirect, and total impacts of a disaster on wages by comparing the 
changes in average construction wages before and after the disaster in affected counties (treatment group) 
with those in unaffected counties (control group). Simultaneously, the dynamic SDMs accounted for time-
invariant county-specific factors, shared influences, and spatial dependencies in the dependent variable, 
exogenous variables, and error term.

Some caveats are noted to assist disaster recovery practitioners, reconstruction engineers, and disaster 
mitigation agencies in better understanding the post-disaster dynamics of construction wages and 
improving their reconstruction strategies and plans. First, the one quarter-lagged positive effect of a disaster 
on construction wages was consistently found in three Gulf Coast states, presenting recent empirical 
evidence to a line of disaster studies. It is recommended that disaster recovery practitioners take preemptive 
actions to increase the construction labor supply in response to the lagged demand surge that occurred one 
quarter after the disaster. Second, the lagged effect of a disaster on wage inflation was attributed to the 
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direct and indirect effects of a disaster. Also, the endogenous spatial interaction effect of construction wages 
was positive in all three Gulf Coast states. The construction wages in county i are positively associated with 
the wages in the neighboring county j. These endogenous and exogenous spatial interaction effects between 
communities should be considered for planning and implementing an effective disaster recovery process.

Although the findings of this research provide detailed and practical insights into the spatiotemporal 
impacts of a disaster on construction wages, it is worthwhile to discuss the limitations of the research 
and suggest directions for future research. First, the results of this study are based on the hurricanes that 
occurred in the U.S. Gulf Coast states between 2015 and 2019. Various disaster types, regional industry 
compositions, and additional factors may lead to differing outcomes across disasters, regions, and time 
periods. Exploring whether the results of this study remain consistent in other post-disaster contexts would 
be a compelling area for future studies. Second, the indirect effects of a disaster on construction wages were 
found to be statistically significant but varied across the states. These variations may be influenced by a range 
of unobserved confounders, including government interventions and insurance policies, which were not fully 
accounted for in this study. For instance, the timing and scale of disaster relief programs, public spending on 
reconstruction, and local government wage subsidies could all affect the labor supply and the wages offered 
in affected areas. Similarly, insurance payouts may influence wage dynamics by affecting the speed and scope 
of reconstruction efforts. Disasters often trigger large-scale insurance settlements, which can create an influx 
of funds that drives up demand for construction workers and, consequently, wages. A promising avenue 
for future research would involve exploring the underlying factors that explain spatial variations in indirect 
or spillover effects and integrating those factors, such as government policies and insurance settlements, 
to better understand how these factors influence labor markets after a disaster. This would provide a 
more comprehensive understanding of the complex relationships between government actions, insurance 
coverage, and post-disaster wage fluctuations. Policymakers and reconstruction engineers could benefit 
from more granular insights into how construction labor market dynamics evolve over time following a 
disaster, which would allow for more effective recovery planning and reconstruction strategies. Despite the 
dataset ending in 2019, it is important to note that our findings remain highly relevant to current trends. 
The observed lagged effect of disasters on construction wages aligns with ongoing discussions about labor 
market resilience in the face of weather-related events (Basile et al., 2024; Demirci and Isik, 2024; Kukeli, 
2025). The persistence of extreme weather events and their growing frequency due to climate change further 
highlight the importance of understanding these wage fluctuations.

While this study focused on pre-pandemic data, it can serve as a baseline for future research on the 
evolving impacts of disasters on construction wages in the context of the post-pandemic. Future research 
could expand upon our findings by incorporating post-2020 data to examine how the pandemic and more 
recent disasters have influenced construction wages. It would be interesting to examine whether the post-
disaster cost inflation has been exacerbated in the post-pandemic era. Specifically, it would be important 
to explore whether the ongoing labor shortages and supply chain issues lead to even more pronounced 
wage increases in disaster-affected areas and how pandemic-related economic shocks have changed the 
trajectory of wage fluctuations after a disaster. Examining these research questions would provide a more 
comprehensive understanding of the evolving relationship between disasters and construction wages and 
offer valuable insights for policymakers and industry stakeholders as they manage recovery efforts in a post-
pandemic world.
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