Modelling seasonality in Australian building approvals
Main Article Content
Abstract
The paper examines the impact of seasonal influences on Australian housing approvals, represented by the State of Victoria[1] building approvals for new houses (BANHs). The prime objective of BANHs is to provide timely estimates of future residential building work. Due to the relevance of the residential property sector to the property sector as whole, BANHs are viewed by economic analysts and commentators as a leading indicator of property sector investment and as such the general level of economic activity and employment.
The generic objective of the study is to enhance the practice of modelling housing variables. In particular, the study seeks to cast some additional light on modelling the seasonal behaviour of BANHs by: (i) establishing the presence, or otherwise, of seasonality in Victorian BANHs; (ii) if present, ascertaining is it deterministic or stochastic; (iii) determining out of sample forecasting capabilities of the considered modelling specifications; and (iv) speculating on possible interpretation of the results. To do so the study utilises a structural time series model of Harwey (1989).
The modelling results confirm that the modelling specification allowing for stochastic trend and deterministic seasonality performs best in terms of diagnostic tests and goodness of fit measures. This is corroborated with the analysis of out of sample forecasting capabilities of the considered modelling specifications, which showed that the models with deterministic seasonal specification exhibit superior forecasting capabilities. The paper also demonstrates that if time series are characterized by either stochastic trend or seasonality, the conventional modelling approach[2] is bound to be mis-specified i.e. would not be able to identify statistically significant seasonality in time series.
According to the selected modeling specification, factors corresponding to June, April, December and November are found to be significant at five per cent level. The observed seasonality could be attributed to the ‘summer holidays’ and ‘the end of financial year’ seasonal effects.
[1] Victoria is geographically the second smallest state in Australia. It is also the second most populous state in Australia. Australia has six states (New South Wales, Queensland, South Australia, Tasmania, Victoria, and Western Australia), and two territories (the Northern Territory and the Australian Capital Territory).
[2] A modelling approach based on the assumption of deterministic trend and deterministic seasonality.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
a) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
b) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Open Access Citation Advantage Service). Where authors include such a work in an institutional repository or on their website (ie. a copy of a work which has been published in a UTS ePRESS journal, or a pre-print or post-print version of that work), we request that they include a statement that acknowledges the UTS ePRESS publication including the name of the journal, the volume number and a web-link to the journal item.
d) Authors should be aware that the Creative Commons Attribution (CC-BY) License permits readers to share (copy and redistribute the work in any medium or format) and adapt (remix, transform, and build upon the work) for any purpose, even commercially, provided they also give appropriate credit to the work, provide a link to the license, and indicate if changes were made. They may do these things in any reasonable manner, but not in any way that suggests you or your publisher endorses their use.