Early cost estimating for road construction projects using multiple regression techniques
Main Article Content
Abstract
The objective of this study is to develop early cost estimating models for road construction projects using multiple regression techniques, based on 131 sets of data collected in the West Bank in Palestine. As the cost estimates are required at early stages of a project, considerations were given to the fact that the input data for the required regression model could be easily extracted from sketches or scope definition of the project. 11 regression models are developed to estimate the total cost of road construction project in US dollar; 5 of them include bid quantities as input variables and 6 include road length and road width. The coefficient of determination r2 for the developed models is ranging from 0.92 to 0.98 which indicate that the predicted values from a forecast models fit with the real-life data. The values of the mean absolute percentage error (MAPE) of the developed regression models are ranging from 13% to 31%, the results compare favorablywith past researches which have shown that the estimate accuracy in the early stages of a project is between ±25% and ±50%.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
a) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
b) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Open Access Citation Advantage Service). Where authors include such a work in an institutional repository or on their website (ie. a copy of a work which has been published in a UTS ePRESS journal, or a pre-print or post-print version of that work), we request that they include a statement that acknowledges the UTS ePRESS publication including the name of the journal, the volume number and a web-link to the journal item.
d) Authors should be aware that the Creative Commons Attribution (CC-BY) License permits readers to share (copy and redistribute the work in any medium or format) and adapt (remix, transform, and build upon the work) for any purpose, even commercially, provided they also give appropriate credit to the work, provide a link to the license, and indicate if changes were made. They may do these things in any reasonable manner, but not in any way that suggests you or your publisher endorses their use.