Quasiabelian landscapes of the traveling salesman problem are elementary

UTSePress Research/Manakin Repository

Search UTSePress Research


Advanced Search

Browse

My Account

Show simple item record

dc.contributor.author Solomon, Andrew en_US
dc.contributor.author Colletti, Bw en_US
dc.contributor.editor en_US
dc.date.accessioned 2010-05-28T09:45:26Z
dc.date.available 2010-05-28T09:45:26Z
dc.date.issued 2009 en_US
dc.identifier 2008007810 en_US
dc.identifier.citation Solomon Andrew and Colletti Bw 2009, 'Quasiabelian landscapes of the traveling salesman problem are elementary', Elsevier Science Bv, vol. 6, no. 3, pp. 288-291. en_US
dc.identifier.issn 1572-5286 en_US
dc.identifier.other C1 en_US
dc.identifier.uri http://hdl.handle.net/10453/8783
dc.description.abstract Regarding a permutation as a (multi-traveler) tour of the traveling salesman problem, we show that-regardless of the distance matrix-the landscape based on a quasiabelian Cayley graph belongs to the class of elementary landscapes, where the cost vector is an eigenvector of the Cayley Laplacian, and where local minima are below average. The quasiabelian case has the additional property that, because the cost vector is an eigenvector of the Cayley Laplacian, the landscape can be reduced into independent components under a Fourier transformation. We indicate the way this may result in parallel (and therefore computationally distributed) traversal of the landscape. en_US
dc.language en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.isbasedon http://dx.doi.org/10.1016/j.disopt.2009.02.001 en_US
dc.title Quasiabelian landscapes of the traveling salesman problem are elementary en_US
dc.parent Discrete Optimisation en_US
dc.journal.volume 6 en_US
dc.journal.number 3 en_US
dc.publocation Amsterdam, The Netherlands en_US
dc.identifier.startpage 288 en_US
dc.identifier.endpage 291 en_US
dc.cauo.name FEIT.School of Systems, Management and Leadership en_US
dc.conference Verified OK en_US
dc.for 010100 en_US
dc.personcode 010771 en_US
dc.personcode 0000052834 en_US
dc.percentage 100 en_US
dc.classification.name Pure Mathematics en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US
dc.date.activity en_US
dc.location.activity ISI:000267412700005 en_US
dc.description.keywords Traveling salesman problem; TSP; Permutation; Group representation; Landscape; Elementary; Eigenvector; Eigenvalue; Quasiabelian en_US
dc.staffid en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record