Domain Driven Data Mining

UTSePress Research/Manakin Repository

Search UTSePress Research

Advanced Search


My Account

Show simple item record Cao, Longbing en_US Yu, Philip en_US Zhang, Chengqi en_US Zhao, Yanchang en_US
dc.contributor.editor en_US 2010-05-28T09:36:40Z 2010-05-28T09:36:40Z 2010 en_US
dc.identifier 2009001489 en_US
dc.identifier.citation Cao Longbing et al. 2010, 'Domain Driven Data Mining',Springer, New York, USA en_US
dc.identifier.issn 978-1-4419-5736-8 en_US
dc.identifier.other A1 en_US
dc.description.abstract * Bridges the gap between business expectations and research output * Includes techniques, methodologies and case studies in real-life enterprise DM * Addresses new areas such as blog mining In the present thriving global economy a need has evolved for complex data analysis to enhance an organization?s production systems, decision-making tactics, and performance. In turn, data mining has emerged as one of the most active areas in information technologies. Domain Driven Data Mining offers state-of the-art research and development outcomes on methodologies, techniques, approaches and successful applications in domain driven, actionable knowledge discovery. en_US
dc.language en_US
dc.publisher Springer en_US
dc.relation.isbasedon en_US
dc.title Domain Driven Data Mining en_US
dc.parent en_US
dc.journal.volume en_US
dc.journal.number en_US
dc.publocation New York, USA en_US
dc.identifier.startpage en_US
dc.identifier.endpage en_US FEIT.Faculty of Engineering & Information Technology en_US
dc.conference Verified OK en_US
dc.for 080611 en_US
dc.personcode 034535 en_US
dc.personcode 107211 en_US
dc.personcode 011221 en_US
dc.personcode 998488 en_US
dc.percentage 50 en_US Information Systems Theory en_US
dc.classification.type FOR-08 en_US
dc.edition 1 en_US
dc.custom en_US en_US
dc.location.activity en_US
dc.description.keywords NA en_US
dc.staffid en_US
dc.staffid 998488 en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record