An extended Kth-best approach for linear bilevel programming

UTSePress Research/Manakin Repository

Search UTSePress Research


Advanced Search

Browse

My Account

Show simple item record

dc.contributor.author Shi, Chenggen en_US
dc.contributor.author Lu, Jie en_US
dc.contributor.author Zhang, Guangquan en_US
dc.date.accessioned 2009-12-21T02:28:08Z
dc.date.available 2009-12-21T02:28:08Z
dc.date.issued 2005 en_US
dc.identifier 2005000774 en_US
dc.identifier.citation Shi Chenggen, Lu Jie, and Zhang Guangquan 2005, 'An extended Kth-best approach for linear bilevel programming', Elsevier Science Inc, vol. 164, no. 3, pp. 843-855. en_US
dc.identifier.issn 0096-3003 en_US
dc.identifier.other C1 en_US
dc.identifier.uri http://hdl.handle.net/10453/3461
dc.description.abstract Kth-best approach is one of the three popular and workable approaches for linear bilevel programming. However, it could not well deal with a linear bilevel programming problem when the constraint functions at the Upper-level are of arbitrary linear form. en_US
dc.publisher Elsevier Science Inc en_US
dc.relation.isbasedon http://dx.doi.org/10.1016/j.amc.2004.06.047 en_US
dc.title An extended Kth-best approach for linear bilevel programming en_US
dc.parent Applied Mathematics And Computation en_US
dc.journal.volume 164 en_US
dc.journal.number 3 en_US
dc.publocation New York, USA en_US
dc.identifier.startpage 843 en_US
dc.identifier.endpage 855 en_US
dc.cauo.name FEIT.School of Systems, Management and Leadership en_US
dc.conference Verified OK en_US
dc.for 010200 en_US
dc.personcode 02014710 en_US
dc.personcode 001038 en_US
dc.personcode 020014 en_US
dc.percentage 100 en_US
dc.classification.name Applied Mathematics en_US
dc.classification.type FOR-08 en_US
dc.custom 0.567 en_US
dc.description.keywords linear bilevel programming; Kth-best approach; optimization; Von Stackelberg game en_US
dc.staffid 020014 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record