Pellian sequences and squares

UTSePress Research/Manakin Repository

Search UTSePress Research

Advanced Search


My Account

Show simple item record Leyendekkers, J en_US Shannon, Anthony en_US
dc.contributor.editor en_US 2014-04-03T01:22:09Z 2014-04-03T01:22:09Z 2012 en_US
dc.identifier 2012003017 en_US
dc.identifier.citation Leyendekkers, J and Shannon, Anthony 2012, 'Pellian sequences and squares', Notes on Intuitionistic Fuzzy Sets, vol. 18, no. 4, pp. 7-10. en_US
dc.identifier.issn 1310-5132 en_US
dc.identifier.other C1 en_US
dc.description.abstract Elements of the Pell sequence satisfy a class of second order linear recurrence relations which interrelate a number of integer properties, such as elements of the rows of even and odd squares in the modular ring Z4. Integer Structure Analysis of this yields multiple-square equations exemplified by primitive Pythagorean triples, the Hoppenot equation and the equation for a sphere centred at the origin. The structure breaks down for higher powered triples so that solutions are blocked. However, Euler?s extension of Fermat?s Last Theorem does not work as the structure does permit multiple power equations such as a 5 + b 5 + c 5 + d 5 = e 5 en_US
dc.language en_US
dc.publisher NNTM en_US
dc.relation.isbasedon NA en_US
dc.title Pellian sequences and squares en_US
dc.parent Notes on Intuitionistic Fuzzy Sets en_US
dc.journal.volume 18 en_US
dc.journal.number 4 en_US
dc.publocation Bulgaria en_US
dc.identifier.startpage 7 en_US
dc.identifier.endpage 10 en_US SCI.Faculty of Science en_US
dc.conference Verified OK en_US
dc.for 010100 en_US
dc.personcode 0000025362 en_US
dc.personcode 701914 en_US
dc.percentage 100 en_US Pure Mathematics en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US en_US
dc.location.activity en_US
dc.description.keywords Modular rings, Integer structure analysis, Pellian sequences, Pythagorean triples, Triangular numbers, Pentagonal numbers. en_US
dc.staffid 701914 en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record