DAML: Domain Adaptation Metric Learning

UTSePress Research/Manakin Repository

Search UTSePress Research

Advanced Search


My Account

Show simple item record

dc.contributor.author Geng, Bo en_US
dc.contributor.author Tao, Dacheng en_US
dc.contributor.author Xu, C en_US
dc.contributor.editor en_US
dc.date.accessioned 2012-10-12T03:33:44Z
dc.date.available 2012-10-12T03:33:44Z
dc.date.issued 2011 en_US
dc.identifier 2011001223 en_US
dc.identifier.citation Geng Bo, Tao Dacheng, and Xu C 2011, 'DAML: Domain Adaptation Metric Learning', IEEE-inst Electrical Electronics Engineers Inc, vol. 20, no. 10, pp. 2980-2989. en_US
dc.identifier.issn 1057-7149 en_US
dc.identifier.other C1 en_US
dc.identifier.uri http://hdl.handle.net/10453/18247
dc.description.abstract The state-of-the-art metric-learning algorithms cannot perform well for domain adaptation settings, such as cross-domain face recognition, image annotation, etc., because labeled data in the source domain and unlabeled ones in the target domain are drawn en_US
dc.language en_US
dc.publisher IEEE-inst Electrical Electronics Engineers Inc en_US
dc.relation.isbasedon http://dx.doi.org/10.1109/TIP.2011.2134107 en_US
dc.title DAML: Domain Adaptation Metric Learning en_US
dc.parent IEEE Transactions On Image Processing en_US
dc.journal.volume 20 en_US
dc.journal.number 10 en_US
dc.publocation Piscataway en_US
dc.identifier.startpage 2980 en_US
dc.identifier.endpage 2989 en_US
dc.cauo.name FEIT.A/DRsch Ctr Quantum Computat'n & Intelligent Systs en_US
dc.conference Verified OK en_US
dc.for 080100 en_US
dc.personcode 0000072411 en_US
dc.personcode 111502 en_US
dc.personcode 0000073389 en_US
dc.percentage 100 en_US
dc.classification.name Artificial Intelligence and Image Processing en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US
dc.date.activity en_US
dc.location.activity en_US
dc.description.keywords CLASSIFICATION en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record