Any 2 Circle Times N Subspace Is Locally Distinguishable

UTSePress Research/Manakin Repository

Search UTSePress Research


Advanced Search

Browse

My Account

Show simple item record

dc.contributor.author Yu, Nk en_US
dc.contributor.author Duan, Runyao en_US
dc.contributor.author Ying, Mingsheng en_US
dc.contributor.editor en_US
dc.date.accessioned 2012-02-02T04:51:12Z
dc.date.available 2012-02-02T04:51:12Z
dc.date.issued 2011 en_US
dc.identifier 2010004644 en_US
dc.identifier.citation Yu Nk, Duan Runyao, and Ying Mingsheng 2011, 'Any 2 Circle Times N Subspace Is Locally Distinguishable', Amer Physical Soc, vol. 84, no. 1, pp. 1-3. en_US
dc.identifier.issn 1050-2947 en_US
dc.identifier.other C1 en_US
dc.identifier.uri http://hdl.handle.net/10453/14575
dc.description.abstract A subspace of a multipartite Hilbert space is said to be locally indistinguishable if any orthonormal basis of this subspace cannot be perfectly distinguished by local operations and classical communication. Previously it was shown that any m . n bipartite system with m > 2 and n > 2 has a locally indistinguishable subspace. However, it has been an open problem since 2005 whether there is a locally indistinguishable bipartite subspace with a qubit subsystem.We settle this problem in negative by showing that any 2 . n bipartite subspace contains a basis that is locally distinguishable. As an interesting application, we show that any quantum channel with two Kraus operators has optimal environment-assisted classical capacity. en_US
dc.language en_US
dc.publisher Amer Physical Soc en_US
dc.relation.hasversion Accepted manuscript version en_US
dc.title Any 2 Circle Times N Subspace Is Locally Distinguishable en_US
dc.parent Physical Review A en_US
dc.journal.volume 84 en_US
dc.journal.number 1 en_US
dc.publocation College Pk en_US
dc.identifier.startpage 1 en_US
dc.identifier.endpage 3 en_US
dc.cauo.name FEIT.School of Systems, Management and Leadership en_US
dc.conference Verified OK en_US
dc.for 020000 en_US
dc.personcode 0000064541 en_US
dc.personcode 106353 en_US
dc.personcode 103396 en_US
dc.percentage 100 en_US
dc.classification.name Physical Sciences en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US
dc.date.activity en_US
dc.location.activity WOS:000292378800005 en_US
dc.description.keywords Quantum States; Entanglement en_US
dc.staffid 103396 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record