A Neural Network Diagnosis Model Without Disorder Independence Assumption

UTSePress Research/Manakin Repository

Search UTSePress Research


Advanced Search

Browse

My Account

Show simple item record

dc.contributor.author Xu, Y en_US
dc.contributor.author Zhang, Chengqi en_US
dc.contributor.editor en_US
dc.date.accessioned 2011-02-07T06:22:15Z
dc.date.available 2011-02-07T06:22:15Z
dc.date.issued 1998 en_US
dc.identifier 2006014561 en_US
dc.identifier.citation Xu Richard and Zhang Chengqi 1998, 'A Neural Network Diagnosis Model Without Disorder Independence Assumption', Springer-verlag Berlin, vol. 1531, pp. 341-352. en_US
dc.identifier.issn 0302-9743 en_US
dc.identifier.other C1UNSUBMIT en_US
dc.identifier.uri http://hdl.handle.net/10453/13502
dc.description.abstract Generally, the disorders in a neural network diagnosis model are assumed independent each other. In this paper, we propose a neural network model for diagnostic problem solving where the disorder independence assumption is no longer necessary. Firstly, we characterize the diagnostic tasks and the causal network which is used to represent the diagnostic problem, then we describe the neural network diagnosis model, finally, some experiment results will be given. en_US
dc.language en_US
dc.publisher Springer-verlag Berlin en_US
dc.title A Neural Network Diagnosis Model Without Disorder Independence Assumption en_US
dc.parent Pricai'98: Topics In Artificial Intelligence en_US
dc.journal.volume 1531 en_US
dc.journal.number en_US
dc.publocation Berlin en_US
dc.identifier.startpage 341 en_US
dc.identifier.endpage 352 en_US
dc.cauo.name FEIT.School of Systems, Management and Leadership en_US
dc.conference Verified OK en_US
dc.for 080109 en_US
dc.personcode 0000022521 en_US
dc.personcode 011221 en_US
dc.percentage 70 en_US
dc.classification.name Pattern Recognition and Data Mining en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US
dc.date.activity en_US
dc.location.activity ISI:000084730100030 en_US
dc.description.keywords Generally, the disorders in a neural network diagnosis model are assumed independent each other. In this paper, we propose a neural network model for diagnostic problem solving where the disorder independence assumption is no longer necessary. Firstly, w en_US
dc.staffid en_US
dc.staffid 011221 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record