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Abstract— The complexity and heterogeneity of cooper-
ating object applications in ubiquitous environments or of
applications in the sensor network domain require the use
of generic models and architectures. These architectures
should provide support for the following three key issues:
flexible installation, management and reconfiguration of
components in the system; optimization strategies whose
implementation usually involves the proper management of
cross-layer information; and proper adaptation techniques
that allow for the self-configuration of nodes and com-
ponents in the system with minimal human intervention.
In this paper, we present one possible instance of such a
generic model and architecture and show its applicability
using Sustainable Bridges, a sensor network application
that requires the analysis of complex sensor data to achieve
its goal of effectively monitoring bridges for the detection
of structural defects.

Index Terms— Sensor networks, cooperating objects,
software architecture, reconfiguration, cross-layer interac-
tions, adaptation

I. I NTRODUCTION

The continuous miniaturization process of com-
puting devices combined with the proliferation of
sensor networks, have led to an increase on the
number of devices that are able to sense their
environment, process it and communicate their re-
sults. The cooperation and coordination tasks of
applications running in such environments present
the application and system developer with new
challenges that need to be resolved [1].

In theEmbedded WiSeNTs project [2], twelve
European universities have joined forces to study
environments composed of a large number of co-
operating objects that interact with each other to
accomplish a common task. These objects might be
composed primarily of sensors, building the tradi-
tional sensor networks found in the literature, be

embedded in their surroundings, in what is usually
called pervasive or ubiquitous environments, or be
immersed in a combination of both worlds. The
difference in mentality of these communities has
lead to the development of two types of approaches:
data-centric andservice-centricsolutions.

In general,data-centric approaches are chosen
in environments where the naming of data and the
use of data types within the network play a more
important role than the specific device that might
be responsible for its processing. Therefore, there
is a dissociation of data and network device which
can be used to dynamically select the appropriate
location where data processing is performed. There-
fore, data-centric approaches are best suited for
database-like operations like aggregation and data
dissemination.

In the literature, there are two different kinds of
data-centric processing techniques. The first one
uses the query/response (or request/reply) paradigm,
so that the network of cooperating objects only
sends responses to specific queries issued by the
user [3]. The second technique assumes that queries
are “stored” in the network and are provided with
an associated lifetime. During their lifetime, each
device is responsible for the processing of the stored
query and sends messages to the issuer of the query
(also called sink) whenever the condition specified
in the query is met [4]. Therefore, both pull-based
and push-based approaches can be used in data-
centric environments.

Although the absolute position of devices within
the network do not play an important role from the
perspective of the issuer of the query, good topology
management techniques need to be used in order to
maximize the lifetime of individual devices.
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In contrast, service-centric approaches are
mostly concerned with the definition of the interface
or API in order to provide certain functionality
for the user. Depending on the specific fields there
are other additional characteristics that need to be
mentioned. For example, in the field of pervasive
computing, the miniaturization of devices as well as
resource-limitation play an important role, whereas
in classic client-server architectures no such restric-
tions apply.

In such environments, the transport mechanisms
are hidden from the user applications (such as in
traditional networked environments), but a certain
cooperation among the nodes in the network allows
for the processing of data. The difference todata-
centric approaches lies in the kind of programming
techniques needed to interact with the network.
In a service-centric environment, the application
developer is supposed to have and use a clear
specification of services offered by the network.

The complexity that arises from the interaction
of computing devices in such settings have led the
researchers in theEmbedded WiSeNTs project to
define cooperating objects in such a way that the
breadth of challenges (and hopefully some solu-
tions) can be easily inferred. For this purpose, we
propose a generic model and architecture that can
be used in arbitrary environments where cooperating
objects interact.

The goal of this paper is, therefore, three-fold:
(1) Provide a more formal definition of cooperating
objects; (2) identify the key characteristics that
software developed for cooperating objects needs
to have; (3) provide a generic network model and
object architecture that would allow for the easy
development and deployment of software in sensor
network environments.

The remainder of this paper is structured as fol-
lows: Section II provides a definition of cooperating
object and derives some requirements for a generic
model and architecture. Section III explains our
network model that defines possible interactions
among cooperating objects. The specifics of the
object architecture are left for section IV, whereas
section V provides an example usage of our model
using the Sustainable Bridges application. Finally,
section VI gives some insight on related work
and section VII concludes this paper and discusses
future work.

II. D EFINITION OF COOPERATINGOBJECTS

As already specified in some internal documents
of the Embedded WiSeNTs project, acooperat-
ing object is a collection of:

• sensors,
• controllers (information processors),
• actuatorsor
• cooperating objects

that communicate with each other in order to ac-
complish a common task in a more or less auto-
nomic way.

More precisely,sensorsare devices that act as
inputs to the cooperating objects and are able to
gather and retrieve information either from other
cooperating objects or from the environment they
are inmersed in.

Controllersare devices that act as data or infor-
mation processors and cooperate withsensorsand
actuatorsin order to be able to interact with their
environment. Furthermore,controllersare equipped
with a storage device that allows them to perform
their tasks. The amount of “effort” devoted by a
particular controller to either information processing
or storage tasks is determined on an individual basis.
This way, the cooperating object network might be
composed of controllers that provide information
processing capabilities, whereas others might spe-
cialize in storing data efficiently.

Actuatorsare devices that act as output producers
and are able to interact and modify their environ-
ment using, for example, some kind of electro-
mechanical device.

Obviously, if sensors, controllers and actuators
need to interact with each other in a distributed
environment, each of them needs to be equipped
with communication capabilities which, depending
on the type of cooperating object network, might be
based on wired or wireless technology.

Finally, the inclusion of othercooperating objects
as part of the definition of cooperating object itself
indicates that these objects can combine theirsen-
sors, controllersandactuatorsin a hierarchical way
and are, therefore, able to create arbitrarily complex
structures.

In order to illustrate this definition more precisely,
imagine that a cooperating object is used to collect
temperature gradients of flammable liquid within an
industrial plant. When the gradient achieves certain
pre-defined thresholds, safety pipe valves must be
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opened to minimize the risks of an explosion. In
this scenario, we have two cooperating objects:
one that continuously measures temperatures and
another one that actuates in the environment by
manipulating valves. The first one is an example of a
classical sensor network with embedded controllers,
whereas the second one would be traditionally de-
scribed as an “actuators and controllers network”.

For the specific implementation of cooperating
objects, there is nothing in the definition above
that forces all three entities (sensors, controllers
andactuators) to be physically independent devices.
In fact, in the case of sensor networks, where the
primary focus is set on gathering data from the
environment and not so much on acting on it,
actuatorsare usually relegated to a second plane and
sensors and controllers are put together in a single
device. Therefore, hardware for sensor networks
usually looks like the MICA family of Fig. 1, where
the integration of sensing devices and controllers is
done on a single board.

Fig. 1. MICA Family from Crossbow Technology Inc.

Cooperating objects need certain system software
that takes care of basic functionality such as com-
munication, event handling and generation, as well
as the scheduling of the installed components. For
the purposes of this paper, we adopt the definition of
componentused in TinyOS [5], the standard system
software found on the MICA-family of Fig. 1 and
extend it to fit our needs. In TinyOS, components
are modular pieces of software that, by means of
interface specifications, can be wired together to
implement a complex application. Components offer
and require certain functionality and are able to
generate or handle events. In our generic archi-
tecture (proposed in section III), we assume the
presence of adaptation components which control
the installed components in the system based on
cross-layer information such as roles.

A role defines the function of a node based
on properties such as hardware capabilities, net-
work neighborhood, location etc. The types of
cooperating objects defined above (sensors, con-
trollers and actuators) are some examples of role
assignments. Other examples for roles areSOURCE,
AGGREGATOR, andSINK for aggregation applica-
tions, CLUSTERHEAD, GATEWAY, andSLAVE for
clustering applications. In previous work [6] we
describe a generic specification language and an
algorithm for efficient role assignment.

Requirements for a Generic Model and Architecture

Using the definition we have just described, it
seems clear that in typical cooperating object appli-
cations, the network itself, that is, the collection of
cooperating objects involved in solving the problem
at hand, is heterogeneous. An application developer
will have to deal with sensors, controllers, actuators,
etc. and probably will need to deal with the com-
plexity of having hybrid network topologies, where
some of the cooperating objects interact with each
other using wireless technology, whereas others
might be connected to an infrastructure.

Moreover, the applications themselves are hetero-
geneous [7], [8], so that their requirements change
drastically from one another. In some cases, due to
the fact that applications are installed for extended
periods of time, their requirements might change
over time and the system software needs to be
quickly adapted to the new application require-
ments.

Finally, depending on the environment where the
application is deployed, the system itself might
change rapidly. Parameters like mobility, network
density, etc. play a crucial role for the selection
of the appropriate algorithm to solve efficiently the
task at hand, but these parameters are, under some
environments, highly dynamic.

To ease the development of sensor network ap-
plications, a generic framework is, therefore, nec-
essary. Such a framework has to support thedata-
centric modelof sensor network applications and
their need forreconfigurationand flexibility. How-
ever, sensor networks are heterogeneous and new
applications and hardware platforms continuously
evolve. Thus, a generic framework has to beex-
tensible and flexible to manage new application
requirements. It should provide mechanisms for the
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parametrization of generic componentsso that they
can meet the requirements of specific applications.
If this is not sufficient, newapplication-specific
componentshave to be installed on the sensor
nodes. The code of these new components has to
be distributed efficiently in the network to avoid
wasting energy.

Finally, applications react differently to changes
in their environment, e.g., changes in the mobility
of nodes. They also have different optimization
parameters, e.g., energy or latency. The framework
must then be able toadapt to these conditions
and support optimizations, especially because of the
resource limitations found in sensor networks. One
approach is to perform cross-layer optimizations by
allowing components to interact closely.

Therefore, in order to provide a generic model
and architecture, we need to provide: a network
model, that describes a collection of cooperating
objects and interactions among them, and an object
architecture that describes the internal characteris-
tics of each device that composes each cooperating
object and allows itself toconfigure its compo-
nents, providecross-layer optimizationsand adapt
to changes in its environment.

III. N ETWORK MODEL

For the description of the network and its
components as defined in section II, our net-
work model is best described as a tupleM =
(G,FN , IN ,FE , IE ,P), where:

• G = (N,E) is a communication graph that
represents the physical connectivity of devices
in the network in the usual way;

• FN is the set of functions that define and map
the properties of each node inG;

• IN is the set of domains for all functionsFi ∈
FN ;

• FE is the set of functions that define and map
the properties of each communication link in
G;

• IE is the set of domains for all functionsFj ∈
FE ; and

• P is the set of primitives that represent emer-
gent properties of the network.

A basic cooperating objectis a graph consisting
of only one physical device (node)ni ∈ N and no
communication links. It is defined as:C = ({ni}, ∅),
whereni is of typesensor, controller, or actuator.

A subgraphC = (N ′, E ′) of G with N ′ ⊆ N
and E ′ = {(a, b) ∈ E : a, b ∈ N ′} is said to
be a cooperating object if C is connected, that
is, ∀N1, N2 ⊂ N ′ with N1, N2 6= ∅, N1 ∪ N2 =
N ′, N1 ∩ N2 = ∅ : ∃(a, b) ∈ E ′ : (a ∈ N1 ∧ b ∈
N2)∨(a ∈ N2∧b ∈ N1). Note thatC always contains
all existing communication links ofG for all nodes
N ′. Figure 2 shows an example of a network with
several cooperating objects.

CO1 CO3

CO2

bwidth=431

comp={C2,C3,C5,C7}

bwidth=35

comp={C1,C2,C7}

comp={C3,C7}

bwidth=1409

basic cooperating object

COx cooperating object x

communication link

Fig. 2. Sample Network Model

FN is a set of (possibly multivalued) functions
of the formFi : N ×N → Ii, whereFi ∈ FN , N is
the set of nodes ofG, andIi ∈ IN is the domain of
function Fi. Analogously,FE is a set of (possibly
multivalued) functions of the formFj : N×E → Ij,
whereFj ∈ FE , E is the set of communication links
of G, andIj ∈ IE is the domain of functionFj. The
first argument of the functions denotes the node the
information is stored on, and the second argument
denotes the entity the information is about.

Finally, let P be a set of primitivesPi ∈ P that
define properties of basic cooperating objects and
their links as a whole. Typical primitives are defined
using logic expressions, as shown in the examples
below.

The specific set of functions defined in each case
depend greatly on the application, but there are
standard functions both inFN and FE that need
to be defined by all applications:

• Froles : N × N → Iroles is a multivalued func-
tion that assigns one or more roles to each node
in the network. The type of a physical device
as defined above, is then simply a specific role
assignment to a node. The membership to a
cooperating object can be expressed as a role,
too.

• Fcomp : N × N → Icomp is a multivalued
function that assigns one or more components
to each node. The set of components defines
the functionality of the node and, therefore,
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the type of work it can perform. Fig. 2 shows
several cooperating objects that store informa-
tion about components. For example, the basic
cooperating object furthest to the right has
componentsC1, C2 andC7 installed.

• Fdata : N × N → Idata is a multivalued
function that assigns one or more data items
to each node in the network. This information
is maintained and updated by each algorithm
in order to provide a means for exchanging
information among components in a standard
way.

• Fpol : N × N → Ipol is a multivalued func-
tion that assigns one or more policies to each
node. These policies are used for adaptation
purposes, as explained in the next section.

• Fbwidth : N × E → Ibwidth is a function
that assigns the link capacity to each edge
in the network. For example, in Fig. 2, the
basic cooperating object furthest to the right
has a communication link with bandwidth 431
to CO2.

As an example of a primitiveP ∈ P, consider
the definition ofProle conn(r, k, ni) as the set of basic
cooperating objects with a given roler ∈ Irole found
in at mostk-hops from basic cooperating objectni.
See [9] for a formal definition.

Primitives can also be used to obtain information
about the composition of a cooperating object. For
examples, the primitivePBCO(co) determines the set
of nodes that belong to a cooperating objectco, and
PFC(co, Fi) applies functionFi ∈ (FN ∪FE) to all
nodesn ∈ N that belong to cooperating objectco.

Applying the definitions described in this model,
it is possible to obtain a “global view” of the
network and to know what is installed in each
cooperating object, what kind of objects are found
in the network and how they operate with each
other. Depending on the specific location where
data, algorithms and policies are stored and exe-
cuted, it is possible to define different processing
techniques using the same formalisms. For exam-
ple, the processing of data centralized in single
controller, or distributed among several controllers
and/or cooperating objects can be specified in our
model by storing the values of certain functions in
its corresponding location.

IV. OBJECTARCHITECTURE

In order to support the generic requirements de-
scribed in section II (flexible reconfiguration, op-
timization and adaptation capabilities), as well as
to fit the model defined in the previous section,
we need support from the internal configuration of
the different cooperating objects available in the
network. For this purpose, our proposed architec-
ture, which we callTinyCubus [9], is composed
of three parts: the Tiny Cross-Layer Framework,
the Tiny Configuration Engine and the Tiny Data
Management Framework.

A. Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a
generic interface to support the parametrization of
components that use cross-layer interactions. As
described in [10], strict layering is not practical for
wireless sensor networks, and thus for cooperating
objects, because certain optimizations might not be
applicable. Therefore, the purpose of this framework
is to manage a copy of cross-layer information
among cooperating objects in astate repository.

This state repositoryallows for the clean sepa-
ration of the data itself and the components that
publish or subscribe to it. Using the more formal
definition of previous sections, thestate repository
physically stores some values of functions inFN ∪
FE , so that they can be used by other cooperating
objects.

TABLE I

SAMPLE STATE REPOSITORY OF NODEn1

Name Type Publishers Subscribers Data
roles Iroles (system) req:C3 n1 → {r1}

n2 → {r1, r2}
comp Icomp (system) (system) n1 →

{C1, C2, C7}
pol Ipol (system) (system) n1 →

(S1, (10, 27, 35))
temp float C1,C5 req:C4,C5 n3 → 24.01
bwidth int C2 req:C5 (n1, n3) → 42

opt:C3

Table I shows the contents of a sample state
repository where cross-layer information is kept.
The system keeps information about thename of
the data item, itstype, a list of publishersof each
data item, a list of optional and requiredsubscribers
to it, and the value of the function itself. Required
subscribers are components that cannot properly

African Journal of Information and Communication Technology, Vol. 2, No. 1, March  2006



6

function if the data item they are subscribed to is no
longer available, whereas optional subscribers might
benefit from a particular data item, but do not need
it.

Finally, thestate repositoryalso stores some de-
rived information, such as topology data, neighbor-
ing cooperating objects, etc. that belong to the set
of primitivesP defined above as part of the network
model.

B. Tiny Configuration Engine

In some cases the separation of code and data as
provided by the Tiny Cross-Layer Framework might
not be enough for some applications. Installing
new components, or swapping certain functions is
necessary, for example, when new functionality such
as a new processing or aggregation function for
sensed data is required by the application. The
Tiny Configuration Engine addresses this problem
by distributing and installing code in the network.
Its goal is to support the configuration of arbitrary
components with the assistance of thetopology
manager.

The topology manageris responsible for the self-
configuration of the network and the assignment of
specific roles to each node (Froles in our model).
It also publishes topology information using the
state repository that describes the neighborhood of
cooperating objects, the status of communication
links and the availability of certain components in
other neighboring nodes.

Additionally, the configuration engine needs to
provide enough capabilities for the efficient recon-
figuration of a cooperating object, which involves
the implementation of bootstrapping code and the
ability to load and install components on the fly.

The configuration engine may benefit from cross-
layer information such as the specific roles available
in the network to provide more efficient implemen-
tations of code distribution algorithms and compo-
nent installation techniques, as shown in [9].

C. Tiny Data Management Framework

The Tiny Data Management Framework is an
Adaptation Framework that also provides a set of
data management and system components. For each
type of standard data management component such

as replication/caching, prefetching/hoarding, aggre-
gation, as well as each type of system compo-
nent, such as time synchronization and broadcast
strategies, it is expected that several implementa-
tions of each component type exist. The Tiny Data
Management Framework is then responsible for the
selection of the appropriate implementation based
on the current information contained in the system.

The cube of Fig. 3, called ’Cubus’, combines op-
timization parameters (O1, O2, . . .), such as energy,
communication latency and bandwidth; application
requirements (A1, A2, . . .), such as reliability or con-
sistency level; and system parameters (S1, S2, . . .),
such as mobility or node density. For each com-
ponent type, algorithms are classified according to
these three dimensions. For example, a tree based
routing algorithm is energy-efficient, but cannot be
used in highly mobile scenarios with high reliabil-
ity requirements. The component implementing the
algorithm is tagged with the combination of para-
meters and requirements for which the algorithm is
most efficient.

O2

O1

S 21S S 3

A 1

A 2

A 3

S 2

O1

A
p

p
. R

eq
.

Opt. 
Par

am
.

Sys. Param.

Policies:

size:1804
symbols:f1,f2,v3,...
relocations:f1-1BF,... optional: bwidth

(S2,A1,O2)
(S2-S3,A3,O1)

required: roles,temp

P6

importantnot import.

P5

Meta

TinyCubus

Code
Dependencies

Data Data

low medium high

P3

P2 P4

P1

Dependencies

Fig. 3. Sample Adaptation Engine

The Tiny Data Management Framework selects
the best suited set of components based on current
system parameters, application requirements, and
optimization parameters. This adaptation has to be
performed throughout the lifetime of the system and
is a crucial part of the optimization process.

In order to accomplish this optimization process,
we need two different parts: the Adaptation Frame-
work itself, shown on the left-hand side of Fig. 3,
and the set of components it manages, shown on the
right-hand side.

The adaptation framework contains three entities:
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a set of parameters, a set of policies and the adapta-
tion components themselves. The set of parameters
is used to provide a classification of the available
components and, as depicted in Fig. 3, form a three-
dimensional space (cube) where components can
be mapped to. This mapping is performed using
experimental evaluation of each component in com-
bination with the appropriate parameters. This way,
we know which components and/or combination
of components perform best for a givensystem
parameter, optimization parameteror application
requirementsparameter.

The second entity found in the adaptation frame-
work, the available policies, are used to adapt and
exchange components. These policies are rules with
certain threshold values that indicate the operations
that need to be performed to trigger changes in
the configuration of objects and, therefore, in the
set of components installed in a cooperating object.
Fig. 3 shows two different kinds of policies for
parametersS2 and O1. For S2, there are policies
P1, P2, P3 and P4 that specify the position of two
threshold values. These thresholds define three areas
(“low”, “medium” and “high”) and the different
policies specify the set of operations that need to
be performed with parameterS2 changes from one
area to the next. For example, ifS2 was “low” and
is now “medium”, the operations defined inP1 are
executed.

Finally, the third entity found in the adaptation
framework are the system components that imple-
ment the policies and parameter checks needed to
accomplish adaptation. For some of the defined
parameters, this implies the necessity of having
a system monitorthat checks certain parameters
(some of which are stored in the state repository) at
regular intervals so as to trigger the right adaptation
policy when needed.

The right-hand side of Fig. 3 shows the interfaces
that need to be specified by the components that
are available for adaptation. These components are
obviously the most important part of the adaptation
framework since they are the ones that provide
the functionality, algorithms, etc. that need to be
adapted. The following pieces of information need
to be provided to the adaptation framework by each
component that wants to be adaptable: a set of code
dependencies, a set of data dependencies, a set of
meta-data items and a mapping to the adaptation
Cubus.

The first element, the set of code dependencies
is specified best by a set of interfaces and a de-
pendency graph. As shown in Fig. 3, this defines
a graph of dependent components that also need
to be installed, uninstalled, modified, etc. if the
component is adapted. Of course, the dependencies
to other components in the system can be extracted
automatically by a compiler and stored as part of
the component definition.

Secondly, the set of data dependencies indicates
which pieces of data provided by other compo-
nents are needed by the component. For example,
Fig. 3 shows that the component on the right-hand
side requires information about the roles available
in the network, temperature values and bandwidth
information. As for the set of code dependencies,
data dependencies can be extracted at compile-time
by analyzing the code in the component and at
run-time by looking at the subscription information
contained in the state repository of the Tiny Cross-
Layer Framework.

Third, the set of meta-data items describes the
internal properties of the component, such as its
code size, the names and types of symbols contained
in the component and a relocation table that is
needed to place the component at arbitrary locations
within a cooperating object. This information is
needed because if components need to be installed,
uninstalled, etc., the adaptation framework needs to
be able to relocate them dynamically based on the
current set of installed components.

Finally, there is some information that needs to be
provided by the component regarding the mapping
to the adaptation framework. These are data items
such as the specifics of the classification within the
three dimensions of the Cubus, threshold values for
policies and changes, and even certain policies that
need to be taken into account by the adaptation
components.

Note that the entities described in the object
architecture and the concepts presented as part of
the network model are tightly coupled. Fig. 4 shows
the relationship between the concepts of section III
and the architecture described in this section. In
this picture, we can see our network of cooperating
objects on the left with 6 basic cooperating objects
and three compound ones. The right-most device
has certain information stored in it: the adaptation
components with the right set of parameters and
components needed for the proper functioning of
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Fig. 4. Architecture of the Cooperating Object Model

the device, and a series of cross-layer data provided
by some of the available components.

V. SAMPLE APPLICATION: SUSTAINABLE

BRIDGES

Let us now use an example to describe how the
model and architecture would look like for a specific
application: Sustainable Bridges.

The goal of the Sustainable Bridges project [11]
is to provide cost-effective monitoring of bridges
using static sensor nodes in order to detect structural
defects as soon as they appear. A wide range of
sensor data is needed to achieve this goal, e.g.,
temperature, relative humidity, vibrations character-
istics, as well as noise detection and localization
mechanisms to determine the position of cracks.
In order to perform this localization, nodes sample
noise emitted by the bridge at a rate of 40 kHz and,
by using triangulation methods, the position of the
possible defect is determined. This process requires
the clocks of adjacent sensors to be synchronized
within 60 µs of each other. Finally, sensors are
required to have a lifetime of at least 3 years so
that batteries can be replaced during the regularly
scheduled bridge inspections.

Fig. 5 shows the topology of the network and
the different cooperating objects needed to monitor
the bridge.CO1 and CO2 are responsible for the
monitoring of the columns of the bridge and contain
several devices that cooperate with each other to
reach consensus about sensor information.CO3

CO3

CO2

CO4

CO1

Fig. 5. Idealized Network Structure of the Sustainable Bridges
Application

andCO4 are responsible for the monitoring of the
bridge “edges”, and all other devices ensure the
connectivity of the network.

In each of these devices and cooperating objects,
and based on the description of the project given
above, we need the following five major components
(more thoroughly described in [12]): cluster man-
agement, event localization, time synchronization,
data aggregation and acoustic emission analysis
components.

The Cluster managementcomponent for sensor
data fusion is needed by each of the cooperating
objects of Fig. 5 that monitor critical parts of the
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bridge. In this setting, each basic cooperating object
(or device) is responsible for the sensing of potential
structural defects using acoustic emission analysis
and, if a potential problem is detected, each device
communicates with its cluster head to find out
whether or not other devices in the same cooperating
object have also reached the same conclusion. If so,
a possible defect event is generated and propagated
through the network.

TheEvent localizationcomponent determines us-
ing triangulation mechanisms and acoustic emis-
sion data from the bridge, the position of cracks
and defects on the structure. For this component,
usage of clustering information is critical so that
the triangulation mechanisms achieve a degree of
accuracy (within a couple of meters) that would
allow a person to know the location of a possible
defect.

The Time synchronizationcomponent allows for
the comparison of complex time series (acoustic
emission waves) gathered by the acoustic emission
sensors. Unless the different devices and cooper-
ating objects are synchronized with each other,
the same event detected by several sensors inde-
pendently cannot be correctly compared since the
acoustic waves are shifted on the time axis. Further-
more, higher time synchronization is required within
cooperating objects, whereas this requirement is not
so crucial for cooperating objects further apart.

The Data aggregationcomponent is able to sum-
marize data retrieved by the sensors in the bridge
on-the-fly using the topological information stored
in each device about the network.

TheAcoustic emission analysiscomponents work
with different degrees of accuracy and complexity
on the acoustic waves produced by the sensors in
order to determine the presence, magnitude and
complexity of potential structural defects on the
bridge.

These components store some cross-layer infor-
mation in the state repository of each cooperating
object. This data is either produced or consumed
by one or more of the components we have just
described. Besides generic information needed by
all applications such as theroles of each device
(for example cluster heads), thetopology and rout-
ing information that defines the connectivity of
the network, andnode vital informationsuch as
the battery level or link reliability, the Sustainable
Bridges application has the following application-

specific data:
Acoustic emission datathat identifies the time,

magnitude and characteristics of potential cracks
detected in the structure, as well as history of past
detections.Temporal datasuch as the current time,
accuracy of the last synchronization round and time
to the next wave synchronization.Dependencies
among componentsbased on subscriptions to data.
For example, the topology information needs to be
used by the acoustic emission analysis component
to find out the set of neighbors it needs to contact in
order to analyze a possible defect. The data aggrega-
tion component needs information about roles, the
topology of the network and time synchronization
data in order to be able to compare different acoustic
waves.

Finally, the adaptation engine contains informa-
tion such as thedependenciesamong components,
and policies (with their correspondingthreshold
values) needed to determine when it is necessary
to perform a certain type of analysis. Based on this
information, the adaptation framework might decide
that certain low-cost low-accuracy analysis can be
performed at the sensor itself, whereas if a certain
threshold is reached, more complex analysis might
need to be performed at the cluster head or at a
central computer located outside the network. Since
acoustic emission waves are too complex to be sent
efficiently to the central computer for analysis, it is
more desirable to trigger the installation of the right
analysis component at the location of the bridge that
needs it.

VI. RELATED WORK

SensorWare [13] and Impala [14] aim at pro-
viding functionality to distribute new applications
in sensor networks. For this purpose, they create
abstractions between the operating system and the
application, although both differ slightly from each
other. SensorWare does not support adaptation and
cross-layer interactions, as it is the case in our
generic architecture and does not provide models
of the network.

In Impala, new code is only transmitted on de-
mand if there is a new version available on a
neighboring node. Furthermore, if certain parame-
ters change and an adaptation rule is satisfied, the
system can switch to another protocol. However,
this adaptation mechanism only supports simple
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adaptation rules. Although it uses cross-layer data,
Impala does not have a generic, structured mecha-
nism to share it and so, is not easily extensible.

The MobileMan project [15] is a system that
aims at creating a cross-layer architecture similar to
ours. However, MobileMan is not targeted towards
sensor networks and assumes environments typical
of mobile ad-hoc networks, which are, in the general
case, not so limited in terms of resources. In addi-
tion, MobileMan focuses on data sharing between
layers of the network protocol stack and, therefore,
does not include the configuration and adaptation
capabilities found in our architecture.

EmStar [16] is a software environment for Linux-
based sensor nodes that, like MobileMan, assumes
the presence of higher-end nodes as part of the
sensor network. EmStar also contains some standard
components for routing, time synchronization, etc.,
but it is not able to provide the adaptation mecha-
nisms available in our architecture.

Finally, regarding the modeling of cooperating
object networks, it is worth mentioning that there
is no available literature that attempts to combine
a network model with a local architecture that
supports it. For example, [17], [18], [19] only deal
with models for the simulation of sensor networks
and obviate the need for models that also incorpo-
rate actuators and more general cooperating objects.
Although [20], [21] try to provide taxonomies and
models for more generic sensor networks, they
only consider the modeling of network character-
istics and never consider the actual characteristics
of the nodes themselves or the type and amount
of software (components) installed in each system
which, for cooperating objects in general and sensor
networks in particular, plays a crucial role, since
resource-limitation is one of the intrinsic character-
istics of such systems.

VII. C ONCLUSION AND FUTURE WORK

Given the complexity of the definition of cooper-
ating objects and the heterogeneity of cooperating
object applications, let them be just sensor network
applications or more complex sensor-actor systems,
there is a need for a generic model and architecture
that allows us to tackle the complexity of such
systems. In this paper, we have presented such a
generic model and architecture that can be used for
cooperating object applications in service-oriented

environments as well as in data-centric environ-
ments, such as sensor networks. Furthermore, we
have shown the integral parts of our proposed model
and architecture by using Sustainable Bridges, a
complex sensor network application.

In terms of future work, there is a need to provide
a clear classification of cooperating object appli-
cations in general and sensor network applications
in particular that will allow us to better show the
applicability of our model to a wide variety of
application domains. In addition, the use of actu-
ators will eventually need the modeling of real-time
applications and control-loops that fall a little short
on our current view of component dependencies and
are, therefore, hard to model using the described
architecture.

VIII. A CKNOWLEDGEMENTS

This work has been partially supported by the
European Union as part of the 6th Framework
Programme Project:Embedded WiSeNTs – FP6-
004400.

REFERENCES

[1] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
century challenges: Scalable coordination in sensor networks,”
in Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking. ACM
Press, 1999, pp. 263–270.

[2] Embedded WiSeNts - Project FP6-004400. [Online]. Available:
http://www.embedded-wisents.org/

[3] J. Gehrke and S. Madden, “Query processing in sensor net-
works,” Pervasive Computing, vol. 3, no. 1, pp. 46–55, 2004.

[4] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TAG: A tiny aggregation service for ad-hoc sensor networks,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 131–146, 2002.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” inProc.
of the 9th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2000, pp. 93–104.
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