
An Efficient Parallel IP Lookup Technique for IPv6 Routers Using
Multiple Hashing with Ternary marker storage

P. Kiran Sree† Dr. Inampudi Ramesh Babu††

† Mr. P.Kiran Sree,Associate Professor, Department of Computer Science, S.R.K
Institute of Technology, Enikepadu, Vijayawada,India, pkiransree@gmail.com,
Mobile: +919959818274.

†† Dr. Inampudi Ramesh Babu,Senior IEEE member & Professor, Department of
Computer Science, Acharya Nagarjuna University,Guntur,India.

Abstract
Internet address lookup is a challenging problem
because of the increasing routing table sizes,
increased traffic, higher speed links, and the
migration to 128 bit IPv6 addresses. Routing
lookup involves computation of best matching
prefix for which existing solutions scale poorly
when traffic in the router increases or when
employed for IPV6 address lookup. Our paper
describes a novel approach which employs
multiple hashing on reduced number of hash
tables on which ternary search on levels is
applied in parallel. This scheme handles large
number of prefixes generated by controlled
prefix expansion by reducing collision and
distributing load fairly in the hash buckets thus
providing faster worst case and average case
lookups. The approach we describe is fast,
simple, scalable, parallelizable, and flexible.

Keywords: IPv6 address lookup, routing,
multiple hashing, controlled prefix expansion.

1. Introduction

Rapid growth of the Internet has created a
demand for high speed routers that can handle
very large routing tables with high data rate.
Internet traffic is doubling every three months
partly because of increased users, and also
because of new multimedia applications. The
higher bandwidth need requires faster
communication links and faster network routers.
Thus the key to improved Internet performance

is faster routers. IP lookup is one of the central
bottlenecks in router forwarding.

Moreover, the destination address of an
arriving packet does not carry with it the
information needed to determine the length of
the longest matching prefix. Hence, we cannot
find the longest match using an exact match
search algorithm. Instead, a search for the
longest matching prefix needs to determine both
the length of the longest matching prefix as well
as the forwarding table entry containing the
prefix of this length that matches the incoming
packet’s destination address, which makes the
lookup problem even more complex.

Most of the IP address lookup schemes
developed so far, both hardware and software,
have dealt with the IPv4 routing mechanism
efficiently to a large extent. However, with the
deployment of the IPv6 routing protocol (address
length = 128 bits) the problem of routing
millions of communication packets every second
based on longest prefix match becomes
cumbersome.

The standard approach used by an IP router to
forward a packet is to keep a forwarding table
based on IP destination address prefixes. Each
prefix is associated with the next hop towards the
destination. The IP router looks in its table for
the longest prefix that matches the destination
address of the packet, and forwards according to
that match.

The rest of the paper is organized as follows.
Section 2 describes existing approaches for IP
lookups in a broad sense and highlights their
limitations. Section 3 describes our new
approach of applying multiple hashing on tables
with prefixes which are expanded by CPE. It
also describes an improved parallel ternary

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

1

search. Section 4 analyses the performance of the
approach. We conclude Section 5 by assessing
the contributions of this paper.

2. Related Research

The Software based IP routing lookup schemes
introduced so far can be broadly classified into
three categories, viz., Trie based schemes, range
search schemes and hash based schemes [6].

2.1 Trie Based Schemes

Trie based schemes include BSD UNIX
implementation of Patricia trie [5], multi-ary trie
with controlled prefix expansion [3], Level
compressed trie [6], and Lulea algorithm [6].
Basically most of these trie based schemes have
a worst case lookup complexity proportional to
the address length. Furthermore, a significant
amount of storage space is wasted in a (radix)
trie in the form of pointers that are null, and that
are on chain (paths with 1-degree nodes, i.e., that
have only one child). Thus the implementation
can require up to 32 or 128 worst case costly
memory accesses for IPv4 and IPv6 respectively.
Hence scalability is poor for the IPv6 address
lookup problem. Even in the best case, with
binary branching and 40,000 prefixes, trie
implementations can take log2(40,000) = 16
memory accesses.

2.2 Range Search Scheme

The range search scheme gets rid of the
length dimension of prefixes and performs a
search based on endpoints of addresses [6]. The
number of basic intervals in the worst case is 2N,
where N is the number of prefixes in the lookup
table). Also, the best matching prefix (BMP)
must be pre-computed for each basic interval,
and in the worst case an update needs to re-
compute the BMP of N basic intervals. The
update complexity is O (N).

2.3 Binary Search on Levels

One attack for solving longest matching
prefix problem is to perform binary search on
levels [6]. Prefixes are divided according to
length, with all prefixes of a given length in a
table. We then perform a binary search for
matching prefixes of the destination address
according to the prefix lengths. Tables for each
prefix length can be stored as a hash table. So, if

there are W different possible prefix lengths, the
search requires O (log2W) time.

2.4 Controlled prefix expansion

Controlled prefix expansion is a technique
which converts a set of prefixes with M distinct
lengths to a set of prefixes with a smaller number
of distinct lengths. So if the number of distinct
prefix lengths is l and l<W, then we can refine
the worst case bounds for tries and binary search
on levels to O (l) and O (log2l) respectively. It
also reduces number of markers significantly
since number of levels is reduced. Markers are
added in the respective tables. Markers for each
prefix are stored in all the potential levels that
would be reached during the lookup. Also
markers are inserted only at the levels whose
length is smaller than that of the prefix to be
searched or inserted [4].

But expansion of prefixes leads to increase in
number of entries in the forwarding table, and
there by leads to collision of entries in the hash
tables when used with binary search on levels.

3. PROPOSED WORK

Worst case lookups in the case of trie based
schemes depend on the maximum prefix length
or address length which is too large for IPv6.
Moreover optimizations based on number of
prefixes or entries in the lookup table would not
scale well in the future since the Internet traffic
is increasing significantly. It instantly directs
towards optimizations based on prefix lengths
which are likely to be more robust for IPv6
addresses. This suggests the use of controlled
prefix expansion to reduce the number of distinct
prefix lengths to k, where k<l. If we can reduce
the worst case lookups from 7 to 3 or 4 we can
double the performance.

But the increase in number of prefixes due to
controlled prefix expansion causes collision in
the hash tables which if not handled will remain
a hindrance to acquiring high throughput in route
lookup. So we propose an approach in which we
use multiple hashing to store prefixes in hash
tables.

So the combined effect of Internet traffic
surge and increase in the number of prefixes due
to expansion makes handling collision a very
important task. So the use of multiple hashing
[2], distributes load in the buckets fairly and also
reduces collision in hash tables and thereby

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

2

leveraging the benefits of controlled prefix
expansion.

In particular, we emphasize that by properly
structuring the data, one can parallelize memory
accesses so that using multiple hash functions is
desirable. One of the first analysis suggests using
multiple tables, with a separate hash function for
each table. Elements that collide in one table
percolate to the next.

Our hash table consists of n buckets. We split
the n buckets into two disjoint equal parts, which
for convenience we call the left and the right.
When an item is inserted, we call both hash
functions, where each hash function has a range
of [1,n\2]. The first hash function determines a
bucket on the left, the second a bucket on the
right. The item is placed in the bucket with
smallest number of existing items; in the case of
a tie, the item is placed in the bucket on the left.
The main point here is that two hash functions
allow greater predictability and a smaller
maximum load, even while using much less
memory.

The lookups are independent and can be done
in parallel. As the leftmost groups are more
likely to hold more items, they can be examined
first. If the pattern is found in one hash bucket,
the other need not be checked. Further, using
multiple hash functions can dramatically
improve upon the total space used to store the
hash table by reducing the amount of unused
space. We need to tradeoff the effectiveness and
the computational cost of the hash functions,
thus CRC is an optimal choice. This scheme is
designed to solve the problems introduced by
searching for a semi-perfect hash function, by
instead using multiple hash functions. This
approach is very general and proves highly
suitable for IPv6 address lookup problem.

Markers are added for all prefixes to guide the
search in the appropriate direction. Finding a
marker implies that a larger best-matching-prefix
may be found in the right or in the higher levels,
whereas absence of marker indicates that there
can be no BMP on the right or in higher levels of
the table. A naive view would indicate placing a
marker for prefix P at all levels in L higher than
the level of P. However, it suffices to place
markers at all levels in L that could be visited by
binary or ternary search when looking for an
entry whose BMP is P.
Consider an example where there are 53 hash
tables, we can determine the potential tables in
which markers are supposed to be added for the
prefixes in 53rd table, H53 to guide parallel
ternary search on levels. First, the searching

algorithm looks up in the 18th and 36th tables;
hence we add markers in those tables so that the
Lookup algorithm will decide to move to part3
of the levels. Subsequently, it can proceed to
search from 37th table to 53rd table. Now it
decides to lookup in the 42nd and 48th tables thus
we add markers there so that it will direct the
search from 49th table to 53rd table. So now the
algorithm looks up in 50th and 52nd tables where
again we need to add markers. Finally the
algorithm finds the BMP in table 53. Note that
we can have as many as 6 markers for a prefix in
the worst case.

3.1 Pseudo code for storing markers:

Considering there are N tables each of distinct
prefix lengths as follows:

 Tables: H1, H2, H3 . . . Hn
 Prefix Lengths: l1, l2, l3 . . . ln

marker[6]; // array

Function Ternary_marker_storage
 For each table Hi of distinct prefix length li
 L=1, H=N, x=0;
 x = marker_storage (x, i, L, H);

For each prefix p of the table Hi of
distinct prefix length li
 For temp 0 to x-1

Store marker of length
lmarker[temp] in the table
Hmarker[temp] corresponding to
prefix p of table Hi.

 End for
End for

 End for
End Function

Function marker_storage(x, i, L, H)

If(L==H)
return x;

Else
 A=(2L+H-1)/3;
 B=(L+2H+1)/3;
 If((i==A) || (i==B))
 return x;
 If((i<A)&&(i<B))
 marker_storage(x, i, L, A-1);
 Else if((i>A)&&(i<B))
 marker[x]=A;
 x=x+1;
 marker_storage(x, i, A+1, B-1)
 Else if((i>A)&&(i>B))
 marker[x]=A;

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

3

 x++;
 marker[x]=B;
 x++;
 marker_storage(x, i, B+1, H);
 End if
End if

End Function

Then Parallel Ternary Search on levels is
employed which splits the levels to be searched
into three parts. It performs two lookups
corresponding to the two boundaries of the three
parts in parallel and then determines which part
of the levels is likely to contain a BMP. The
search is guided by markers as shown in fig. 1.

Fig. 1 Parallel Ternary Search

Thus parallel ternary search performs parallel
lookup at levels A and B and determines which
part (1, 2, and 3) contains the actual BMP and
calls parallel Ternary search of the
corresponding part recursively.

Parallel_Ternary_Lookup(L,H)
{

if(L==H)
return BMP;
else
{

A=Lookup((2L+H-1)/3)
B=Lookup((L+2H+1)/3);
// actions are taken according
to the rules specified in table 1.

}
}

P Prefix found
M Marker found
PM Prefix and Marker found

- Nothing found

Valid bit =0 indicates that such a combination

is not possible.

When a matching prefix is found then it is
stored as the BMP; if a longer matching prefix is
found later then it replaces the current BMP. A
marker indicates that a longer matching prefix
can be found for the given address though it does
not ensure that a better match will be found. So
at times a marker can be misleading, such
markers are called false markers. For instance
say the address length is 4 bits, a marker for a
prefix 0001* found in the second table 00*
matches an address 0010 though the prefix
corresponding to the marker does not match the
address. So the marker in this case is misleading
and hence it is a false marker.

Case A B Valid Action – handles

false markers

1 P P 0 -

2 P M 0 -

3 P PM 0 -

4 P - 1 Store A’p as BMP

5 M P 1 Store B’p as BMP

6 M M 1
Lookup in part3
Lookup in part1
Lookup in part2

7 M PM 1 Store B’p as BMP
Lookup in part3

8 M - 1 Lookup in part2
Lookup in part1

9 PM P 1 Store B’p as BMP

10 PM M 1
Store A’p as BMP
Lookup in part3
Lookup in part2

11 PM PM 1 Store B’p as BMP
Lookup in part3

12 PM - 1 Store A’p as BMP
Lookup in part2

13 - P 1 Store B’p as BMP

14 - M 0 -

15 - PM 0
-

16 - - 1 Lookup in part1

Table 1

Parallel Ternary Search also handles the cases
of false markers. For instance consider the case 8
in which we have a marker which may be a false
marker so we need to lookup for the best
matching prefix in part1 also.

4. Performance Evaluation
Reducing number of levels of hash tables
improves worst case performance in both binary
and ternary search on levels. The following

(2L+H-1)/3

Part 1 Part 2 Part 3

A B
L

H

(L+2H+1)/3

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

4

graphs depict the number of lookups for all
prefix lengths with and without prefix expansion
for binary search (fig. 2) and ternary search
(fig.3) respectively.

Number lookups for each prefix length for Binary search wihtout
and with prefix expansion

0
1
2
3
4
5
6
7
8

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127
Prefix Length

N
u

m
b

er
 o

f
lo

o
k

u
p

s

Binary Search without prefix expansion

Binary Search with prefix expansion

fig. 2

Number of lookups with Ternary search on levels without

and with prefix expansion

0
1
2
3
4
5
6
7
8

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

length of prefixes

N
u

m
b

er
 o

f
p

re
fi

x
es

Ternary Search without prefix expansion

Ternary Search with prefix expansion

fig. 3

The improved parallel ternary search technique
gives faster worst case (4 lookups) and average
case lookups (3 lookups) than binary search on
levels (worst case – 6 and average case – 5
lookups). The graph below (fig.4) shows the
number of lookups for all prefix lengths for
binary and parallel ternary search on levels.

We choose the number of distinct prefix
lengths for ternary search based on natural
heuristics using the expression

X n = 3 * Xn-1 + 2, where X0=1

Thus we can choose to have 5, 17 and 53 as
options for number of distinct prefix lengths.
Using 53 hash tables will lead to 4 lookups in the
worst case, and having 17 hash tables lead to 3
worst case lookups and having 5 hash tables to 2
lookups.

Using 53 hash tables each corresponding to
one prefix length, with appropriate markers the
number of lookups for prefixes of different
lengths in binary and ternary search on levels is
given by the figure, fig. 4.

Number of distinct prefix lengths = 53;

Distinct prefix lengths allowed are:

{1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26,

29, 31, 34, 36, 39, 41, 44, 46, 49, 51,

54, 56, 59, 61, 64, 66, 69, 71, 74, 76,

79, 81, 84, 86, 89, 91, 94, 96, 99, 101,

104, 106, 109, 111, 114, 116, 119, 121,

124, 126, 127, 128}

Further we provide a simple approximate fluid
limit analysis of the multiple hashing schemes.
Considering the case with d=2, where we have
two groups and n/2 buckets, the fraction of the n
hash buckets that contain atleast i items is
Xi(1) ≤ (2-F

d
(i))/ d

Number of memory accesses for binary and ternary search on hash

tables for 53 distinct prefix lengths

0

1

2

3

4

5

6

7

8

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127
Length of prefix

n
u

m
b

er
 o

f
m

em
o

ry

ac
ce

ss
es

Binary search with prefix expansion
Ternary search with prefix expansion

fig. 4

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

5

Intuitively, this implies that the xi fall extremely
quickly with i, and hence the maximum load is
very small.

5. Conclusion

We have proposed a new approach for best
matching search. The combination of multiple
hashing and prefix expansion schemes proposed
are suitable for situations where it is important to
limit the maximum number of items that fall into
a bucket. The key feature is that all hashes and
memory lookups can be done in parallel. The
improved parallel ternary search provides faster
worst-case and average-case lookup times.

6. Acknowledgement

I am grateful to Dr. P. Venkata
Narasaiah Director, S.R.K Institute of
Engineering and Technology, for his consistent
support at every stage of my research work. I
specially thank our President Sri B.S Apparao &
Secretary Sri B.S. Sri Krishna for providing
necessary infrastructure. I am indebted to my
colleagues for providing wonderful atmosphere
to work with.

7. References

[1] T. Srinivasan et al. “High Performance
Parallel IP Lookup Technique Using Distributed
Memory Organization” In Proc. of the IEEE
International Conference of Information
Technology (ITCC’04), Las Vegas, USA.

[2] Andrei Broder, Michael Mitzenmacher.
“Using Multiple Hash Functions to improve IP
Lookups” IEEE INFOCOM, 2001.

[3] V. Srinivasan, G. Varghese. “Fast address
lookups using controlled prefix version”. ACM
Transactions on Computer Systems, Vol. 17, No.
1, February 1999, Pages 1–40.

[4] M. Wald Vogel, G. Varghese, J. Turner, B.
Plattener, “Scalable High Speed IP Routing
Lookups”. In Proc. Of SIGCOMM 97, 1997.

[5] Miguel Á. Ruiz-Sánchez, INRIA Sophia
Antipolis, Universidad Autónoma etropolitana
Ernst W. Biersack, Institut Eurécom Sophia
Antipolis Walid Dabbous, INRIA Sophia

Antipolis,.”Survey and Taxonomy of IP Address
Lookup Algorithms”. IEEE Network •
March/April 2001

[6] Pankaj Gupta “Algorithms For Routing
Lookups and Packet Classification” December
2000.

P.KIRAN SREE
received his B.Tech in
Computer Science &
Engineering, from
J.N.T.U and M.E in
Computer Science &
Engineering from Anna
University. He has
published many technical
papers; both in
international and national

Journals .His areas of interests include Parallel
Algorithms, Artificial Intelligence, Compile
Design and Computer Networks. He also wrote
books on Analysis of Algorithms, Theory of
Computation and Artificial Intelligence. He is
now associated with S.R.K Institute of
Technology, Vijayawada.

African Journal of Information and Communication Technology, Vol. 6, No. 1, September 2011

6

