Applying total interpretive structural modeling to study factors affecting construction labour productivity

Sayali Shrikrishna Sandbhor, Rohan P. Botre


Abstract

Construction sector has always been dependent on manpower. Most of the activities carried out on any construction site are labour intensive. Since productivity of any project depends directly on productivity of labour, it is a prime responsibility of the employer to enhance labour productivity. Measures to improve the same depend on analysis of positive and negative factors affecting productivity. Major attention should be given to factors that decrease the productivity of labour. Factor analysis thus is an integral part of any study aiming to improve productivity.  Interpretive structural modeling is a methodology for identifying and summarizing relationships among factors which define an issue or problem. It provides a means to arrange the factors in an order as per their complexity. This study attempts to use the latest version of interpretive structural modeling i.e. total interpretive structural modeling to analyze factors negatively affecting construction labour productivity. It establishes interpretive relationship among these factors facilitating improvement in the overall productivity of construction site.

Keywords

Construction project, labour productivity, interpretive structural modeling, total interpretive structural modeling

Full Text

PDF

References

Choromokos J. Jr and McKee K.E. (1981), Construction productivity improvement, Journal of the Construction Division, ASCE, Vol. 107 No. 1, pp. 35-47.

Arditi, D. (1985), Construction productivity improvement, Journal of Construction Engineering and Management, ASCE, Vol. 111 No. 1, pp. 1-14.

Thomas, H.R., Moloney, W.F., Horner, R.M.W., Smith, G.R., Handa, V.K. and Sanders, S.R. (1990), Modeling construction labour productivity, Journal of Construction Engineering and Management, ASCE, Vol. 116 No. 4, pp. 705-26.

Kaming, F.P., Olomolaiye, P.O., Holi, G.D., Kometa, S.T. and Harris, F.C. (1996), Project manager’s perceptions of production problems: an Indonesian case study, Building Research and Information, Vol. 24 No. 5, pp. 302-329.

Moselhi O.and Khan Z. (2012), Significance ranking of parameters impacting construction labour productivity, Construction Innovation, Vol. 12 No. 3, 2012,pp. 272-296.

Jarkas, A. and Bitar, C. (2012). ”Factors Affecting Construction Labour Productivity in Kuwait.” Journal of Construction Engineering and Management, 138(7), 811–820.

Warfield, J.N. (1974), “Towards interpretation of complex structural models”, IEEE Transactions: System, Man and Cybernetics, Vol. 4 No. 5, pp. 405-17.

Sage, A.P. (1977), Interpretive Structural Modelling: Methodology for Large Scale Systems, McGraw-Hill, New York, NY, 1977, pp. 91-164.

Farris D.R., Sage A.P. (1975), On the use of interpretive structural modeling for worth assessment , Computers & Electrical Engineering, Volume 2, Issues 2–3, June 1975, Pages 149–174.

Sushil (2012), “Interpreting the interpretive structural model: organization research methods”, Global Journal of Flexible Systems Management (June 2012) 13(2):87–106.

Nasim, S. (2011), “Total interpretive structural modeling of continuity and change forces in e-government”, Journal of Enterprise Transformation, Vol. 1 No. 2, pp. 147-68.

Watson R.H. (1978), Interpretive structural modeling- A useful tool for technology assessment, Technological Forecasting and Social Change, Volume 11, Issue 2, 1978, Pages 165–185.

Mandal, A. and Deshmukh, S.G. (1994), “Vendor selection using interpretive structural modelling (ISM)”, International Journal of Operations and Production Management, Vol. 14 No. 6, pp. 52-9.

Haleem, A., Sushil, Qadri, M.A. and Kumar, S. (2012), “Analysis of critical success factors of world class manufacturing practices: an application of interpretive structural modeling and interpretative ranking process”, Production Planning and Control: The Management of Operations, Vol. 23 Nos 10-11, pp. 722-34.

Singh, R.K. (2011), “Developing the framework for coordination in supply chain of SMEs”, Business Process Management Journal, Vol. 17 No. 4, pp. 619-38.

Qureshi, M.N., Kumar, D. and Kumar, P. (2008), “An integrated model to identify and classify the key criteria and their role in the assessment of 3PL services providers”, Asia Pacific Journal of Marketing and Logistics, Vol. 20 No. 2, pp. 227-49.

Sahney S., Banwet D.K. and Karunes S. (2010), “Quality framework in education through the application of interpretive structural modeling: an administrative staff perspective in the Indian context”, The TQM Journal, Vol. 22 No. 1, pp. 56-71.

Soti A., Shankar R. and Kaushal O.P. (2010), “Modeling the enablers of Six Sigma using interpreting structural modeling”, Journal of Modelling in Management, Vol. 5 No. 2, pp. 124-41.

Singh A.K. and Sushil (2012), Modeling enablers of TQM to improve airline performance, International Journal of Productivity and Performance Management Vol. 62 No. 3, 2013 pp. 250-275.

Kumar S., Luthra S, Haleem A.(2013), Customer involvement in greening the supply chain: an interpretive structural modeling methodology. Journal of Industrial Engineering International, 9:6.

Sushil (2005a), “Interpretive matrix: a tool to aid interpretation of management in social research”, Global Journal of Flexible System Management, Vol. 6 No. 2, pp. 27-30.

Sushil, (2005b), “A flexible strategy framework for managing continuity and change”, International Journal of Global Business and Competitiveness, Vol. 1 No. 1, pp. 22-32.

Prasad U.C. and Suri R.K. (2011), “Modelling of continuity and change forces in private higher technical education using total interpretive structural modeling (TISM)”, Global Journal of Flexible Systems Management, Vol. 12 No. 3 & 4, pp. 31-40.

Wasuja S., Sagar M., Sushil (2012), Cognitive bias in salespersons in specialty drug selling of pharmaceutical industry, International Journal of Pharmaceutical and Healthcare Marketing Vol. 6 No. 4, 2012 pp. 310-335.

Srivastava A.K. and Sushil (2013), Modeling strategic performance factors for effective strategy execution, International Journal of Productivity and Performance Management, Vol. 62 No. 6, 2013, pp. 554-582.

Sonmez, R., and Rowings, J. (1998). Construction labour productivity modeling with neural network, Journal of Construction Engineering and Management, 124(6), 498–504.

Hanna, A. S., Chang, C., Sullivan, K., and Lackney, J. A. (2008). Impact of shift work on labour productivity for labour intensive contractor, Journal of Construction Engineering and Management, 134(3), 197–204.

Eastman C. M., and Sacks R. (2008). Relative productivity in the AEC industries in the United States for on-site and off-site activities, J. Constr. Eng. Manage., 134(7), 517–526.

Zhigang Shen, Wayne Jensen, Charles Berryman, Yimin Zhu (2011), Comparative Study of Activity-Based Construction Labour Productivity in the United States and China, Journal Of Management in Engineering © ASCE / APRIL 2011.

Ibbs W. (2012), Construction Change: Likelihood, Severity, and Impact on Productivity, Journal of Legal Affairs and Dispute Resolution in Engineering And Construction, ASCE, Vol 4, No. 3, /2012/ pp 67–73.

Shehata M.E. and El-Gohary K.M. (2011), Towards improving construction labour productivity and projects’ performance, Alexandria Engineering Journal (2011) 50, 321–330.

Enshassi A., Mohamed S., Mustafa Z.A., Mayer P.E. (2007), Factors affecting labour productivity in building projects in the gaza strip, Journal of civil engineering and management, 2007, Vol XIII, No 4, 245–254.

Attri R., Dev N. and Sharma V. (2013), Interpretive Structural Modelling (ISM) approach: An Overview, Research Journal of Management Sciences, Vol. 2(2), 3-8, February (2013).